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Abstract

An algorithm is presented by which the Riemann problem in gas dynamics can be
solved for a non—convez equation of state. The non—convexity causes non—standard
wave patterns, e.g. composilte waves and anomalous behavior of physical quantities
along classical waves, e.g. expansion and sonic shocks, may occur. In contrast to
standard Riemann solvers, these effects are taken into special account. The deriva-
tion of the algorithm is based on construction principles which are motivated by
analytical investigations in the context of gas dynamics as well as general systems
of hyperbolic conservation laws.

With the aid of the extended Riemann solver we compare an ideal gas and a
real gas. The results show that the non—classical effects are significant and can not
be treated as a perturbation of an ideal gas. This implies that existing flow solvers
have to be appropriately adapted when performing numerical simulations of flows in
fluids exhibiting non—classical effects such as retrograde fluids.
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1 Introduction — The Riemann Problem in Fluid
Dynamics

In continuum mechanics, the state of the fluid is characterized by several macroscopic
variables, e.g. mass density p, specific internal energy e and particle velocity w. The
evolution of the fluid is governed by the balance equations of mass, momentum and energy

Pt + div (p’ll,) = 07
(pu), + div(puu” + pI) = divr, (1.1)
(pE)e + div(pu(E +p/p)) = div(ru —q)

where F = e + 0.5u? is the total specific energy, p is the pressure, 7 is the stress tensor
and q is the heat flux. In the following, the effects of viscosity and heat conduction
are neglected, i.e., 7 = 0, ¢ = 0. Furthermore, p is assumed to be the equilibrium
thermodynamic pressure. The resulting inviscid flow equations, in the following referred
to as Euler equations, have to be supplemented by an additional equation, the so—called
equation of state (EOS). The EOS characterizes the material properties of the fluid and has
a strong influence on the structure and dynamics of waves. According to the fundamental
identity of thermodynamics the pressure is related to specific volume v = 1/p and specific
entropy s. However, in view of computational fluid dynamics, it is preferable to write p in
terms of the specific volume and the specific internal energy e.

In fluid dynamics, the propagation of waves is of special interest and has been the
subject of numerous analytical and experimental investigations. These are inspired by
the pioneering work of B. Riemann on wave propagation in air [Rie53]. An appropriate
and simple experimental configuration that has been frequently considered is a shock
tube where two states of a fluid are separated by a diaphragm. Instantly removing the
diaphragm several waves, e.g. shock waves, rarefaction waves and contact surfaces, develop
and propagate with increasing time as can be observed in shock tube experiments (see

Fig. 1, 2).

diaphragm raref. cd shock
(,o,u,e)l (p7u7€)7’
Figure 1: Initial configuration at t = 0 Figure 2: Wave propagation at ¢ > 0

The Riemann problem is an initial value problem with scale-invariant initial data.
Here, we always suppose the flow to exhibit planar symmetry, i.e., the problem is inherently
onedimensional. It is of special interest in different research fields. For instance, it can
be applied in (i) engineering as designing tool of shock tube experiments [Ess91], (ii) in
numerical simulations as core ingredient of finite volume schemes [God59] and (iii) in
physics for deriving constraints of the EOS [MP89].

By now, the Riemann problem is well understood for the Euler equations that model
equilibrium hydrodynamics. Among other investigations, significant contributions with
special emphasis on shock waves have been made by Bethe [Bet42], Weyl [Wey49], Courant
and Friedrichs [CF48], Landau and Lifshitz [L.1.59], Wendroff [Wen72a, Wen72b]. These
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studies inspired the work of Gelfand [Gel59], Oleinik [Ole59], Lax [Lax57] and Liu [Liu75]
who generalized the results from fluid dynamics to strictly hyperbolic conservation laws.
A detailled review is given by Menikoff and Plohr [MP89].

The general construction principle is essentially based on the scale-invariance of the
solution and the hyperbolicity of the governing equations of fluid motion. These proper-
ties require the solution to be composed of different waves in the time-space continuum
which correspond to different characteristic velocities. Moreover, there exists a one-to—one
correspondence between a single wave in the {—x plane and the states in the phase space
which can be connected by this wave. All of these states are lying on a curve. Therefore,
the solution of the Riemann problem can be calculated by determining the intersection
points of the different curves in the phase space which connect the two initial states. To
distinguish the respective settings in the course of discussion we will consistently refer to
one parameter families of states in phase space as curves while speaking of waves in the t—z
plane. The solution of the Riemann problem makes essential use of considerations in phase
space. Hence, the most crucial point in solving the Riemann problem is the construction of
the curves in phase space. These curves are composed of three kinds of elementary curves
namely, rarefaction curves, shock curves and contact discontinuities. The composition
of these curves significantly depends on the behavior of the corresponding characteristic
field. These fields are linearly degenerated or genuinely nonlinear, i.e., the curve is just a
contact discontinuity or it is composed of shock and rarefaction curves. In the context of
gas dynamics, the characteristic field depends on the EOS for the pressure, in particular,
on the behavior of the pressure along isentropes in the pressure—volume plane. In a wide
range of the phase space, the isentropes are convex, frequently modelled by an ideal EOS
which is used in many applications. However, near the vapor-liquid saturation boundary
the isentropes are not strictly convex, e.g. modelled by the van der Waals EOS. Due to
the non—convexity, the curves have to be modified which results in non-standard physical
effects, e.g. sonic shocks, expansion shocks, compression waves or mixed waves. In general,
existing Riemann solvers do not take these effects into account (see e.g. [Smo82, CG85]).

The main objective of the present work is the construction of an exact Riemann solver
for the Euler equations in fluids with non—convex FOS. This solver may serve as a tool for
validating numerical schemes applied to fluids which exhibit these non—standard phenom-
ena. Furthermore, parameter studies can be performed by which the influence of the EOS
(e.g. van der Waals, Redlich-Kwong, etc.) on the structure of the non—standard waves can
be examined. Here, we follow a concept that has been originally derived by Wendroff for
the Fuler equations (see [Wen72a, Wen72b]). Later, Liu generalized the construction prin-
ciples for systems of hyperbolic conservation laws (see [Liu75]). Although the construction
principle is well-known, the analysis which is currently available has to be complemented
by suitable constructive ingredients. In particular, this requires the identification of an
appropriate curve parameter. To this end, we have to examine the monotonicity behavior
of physical quantities such as pressure and velocity along the curves under consideration.
Here, the thermodynamic pressure turns out to be an appropriate choice under certain
thermodynamical constraints. The investigation of this problem is of special interest in
the present work, since it strongly influences the algorithmic formulation of the Riemann
solver.

We therefore reconsider to some extent the construction of the curves. With the aid
of these curves, we explain how to solve the Riemann problem in the phase space by
connecting the initial states in the p—u plane, i.e., we determine one intersection point of
the two curves originating from the initial states. We emphasize that this procedure is



specifically adapted to the Euler equations. In the context of general hyperbolic systems
the construction principle is related to multiple shooting schemes which are applied to
two—point boundary value problems. Finally, the Riemann solution is transferred from
the phase space to the t—x plane. Here, the characteristic velocities and shock speeds
corresponding to the intermediate states are of special interest. To this end, we discuss
the behavior of these velocities along the curves in some detail.

In the course of deriving the Riemann solver, we consider the following three issues

o constructive analysis of the wave phenomena for the Riemann problem of the Fuler
equations with non—convex EOS,

o identification of the resulting mathematical problems and
e the algorithmic realization.

To this end, the paper is organized as follows. We start in Section 2 with a review on
thermodynamical equilibrium which provides some physically meaningful constraints for
the definition of the EOS. In Section 3 we summarize basic construction principles which
hold for general systems of conservation laws. Here the proofs are omitted, instead we refer
to the work of Liu [Liu74, Liu75, Liu76a, Liu76b]. These principles build the framework
for deriving an algorithm presented in Section 4 by which the Riemann problem for the
Euler equations with non—convex EOS can be exactly solved. This algorithm is essentially
based on the parameterization of the curves with respect to the pressure. After computing
the curves, the Riemann problem is solved by determining the intersection point of the
curves in the velocity—pressure plane. By the profiles of the characteristic velocities and
shock speeds the solution is mapped from the phase space to the t—z plane. In Section
6, we close with some applications and compare the Riemann solution where we apply a
convex KOS and a non—convex EOS, respectively.



2 Some Remarks on the Equation of State

The material properties have a strong influence on the structure and dynamics of waves.
These properties are characterized by the EOS. Therefore, we recall some basic principles
of thermodynamics which impose certain constraints on the FEOS. Here, we restrict to
thermodynamical equilibrium, i.e., the internal specific energy e of an equilibrium state is
related to the specific entropy s and the specific volume v

e=e(v,s). (2.1)

In a wide range of the phase space, e is a smooth function. Therefore, we suppose that e
is four times continuously differentiable throughout this work. However, at points along
saturation boundaries the second derivatives may fail to exist. But they exhibit at most
jump discontinuities.

Neglecting irreversible effects, e.g. viscosity and heat conduction, the first and second
law of thermodynamics imply the fundamental thermodynamic identity

de = —pdv + Tds. (2.2)

Consequently, the pressure p and the temperature T' can be represented as partial deriva-
tives of the internal specific energy

p(v,s) = —ey(v,8), T(v,s)=es(v,s) (2.3)
which are supposed to be non—negative, i.e.,
p=0, T=0. (2.4)

In addition, the assumption of thermodynamic stability imposes some constraints on the
second derivatives, namely, that e is jointly convex in (v,s). Since e is supposed to be
sufficiently smooth this is equivalent to the fact that the Hessian of e is non—negative, i.e.,

ss(V,5) >0, e,(v,8) >0,  e5(v,8)ew(v,s) > e (v,s). (2.5)
Finally, we need some assumptions concerning the asymptotic behavior, namely,

lims=0, lims=o00 (2.6)
T—0 T—00

where the first limit is given by the third law of thermodynamics. This implies that the
domain of definition for the EOS is restricted to

v>0, s>0. (2.7)
Moreover, the limits
71J1_r>%p(v,3) = o0, Uli}rgop(v,s) =0, Sli)r?o e(v,s) = oo, Sli)r?o p(v,s) =0 (2.8)

hold.
In view of characterizing local properties of the EOS we introduce three dimensionless
quantities based on the second derivatives of e (see [Dav85, MP89]). In particular, these



are the adiabatic exponent ~, the Grineisen coefficient I' and the dimensionless specific
heat ¢

7= Tewl\U,S8) = —— P, 5), 2.9

5 (v,s) 5 (v,s) (2.9)

I' = _%esu(vvs):%ps(vvs)v (210)
pv pv

g = Den(v,s) = BTiv,s). 2.11)

The adiabatic exponent may also be interpreted as ”dimensionless sound speed”, see
[MP8Y], since it is related to the sound speed ¢ by

= —v’p,(v,8) = ypv > 0 (2.12)

In view of the hyperbolicity of the fluid equations, this quantity is supposed to be strictly

positive. This assumption is valid in the entire phase space except for the critical point.
In terms of the dimensionless quantities the stability assumptions (2.5) read

g>0, >0, yg=>T% (2.13)

Menikoff and Plohr show in their investigation [MP89] that these conditions do not suffi-
ciently characterize the material properties. To this end, they represent the shock curves
with respect to the dimensionless quantities and deduce sufficient conditions for these
quantities which guarantee the solution of the Riemann problem to exist.

Another dimensionless quantity defined by the third derivative of e is the fundamental
derivative of gas dynamics

1 VUV ) 1 2
——w = —U—puu(v,s). (2.14)

G:= 2 ew(v,s) N 2p

Obviously, the sign of G is related to the curvature of the isentropes in the p—v plane. For
an ideal gas, the isentropes are convex, i.e., G is positive. However, close to the vapor—
liquid saturation boundary materials are known to exhibit a region where the isentropes
are concave, i.e., G is negative (see Fig. 3). Consequently, there need to exist points of
inflection which are isolated zeros of G along isentropes. Therefore, we distinguish between
conver KOS and non—conver EOS corresponding to the behavior of the isentropes. We
will see later that G has significant influence on the structure of the Riemann problem.

Up to now, all relations have been derived from the EOS (2.1) in terms of v and s.
However, in view of computational fluid dynamics it is more convenient to use an EOS in
the form

p=p(v.e). (2.15)
We will refer to (2.1) as the complete EOS and to (2.15) as the incomplete EOS following

the notation in [MP89]. Whenever the pressure and the temperature are strictly positive,
then e is a monotone function in v and s. Hence, we can change variables, i.e.,

s = s(v,e) (2.16)

and substitute s in p = p(v,s). This means that the incomplete EOS can be derived
from the complete FOS. However, in general no incomplete EOS exists determining a
complete EOS which is thermodynamically consistent (see [MP89], p. 83). Nevertheless,
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Figure 3: Isentropes in p—v plane, L=Liquid, V=Vapor,
M=Mixture, C=Critical Point

we prefer to use the incomplete EOS as is usually done in computational fluid dynamics.
Consequently, the incomplete EOS at hand may not be valid throughout the physically
meaningful phase space. Hence, the range of validity is implicitly given by the demand
of thermodynamic consistency, i.e., (i) T > 0 (change of variable), (ii) limr_os = 0
(3rd law of thermodynamics) and (iii) s = s(v,e) is jointly concave (thermodynamic
stability). Furthermore, the dimensionless quantities have to be written in terms of v and
e. To this end, we notice that the first and second derivative of an arbitrary quantity
f=f(v,s) = f(v,e(v,s)) along an isentrope are given by

fv|(v75) = (fv _pfe)|(u,e)7 (2.17)
fvv|(v,s) - (fvv - p(2fve - fepe - ppee) - fepv) |(U76) (218)
where the fundamental identity of thermodynamics implies s,(v,e) = p/T and T =

es(v,8) > 0 for s # 0. From this we conclude s.(v,e) = 1/T and p.(v,e) =
ps(v,8)s:(v,e) = ps(v,s)/T. For f = p we obtain in particular

pU(U,S) :pv(vve) —p(v,e)pe(v,e) (2'19)

We will close this section with some remarks on sufficient and necessary conditions on
the first derivatives of p for thermodynamic stability (2.13), which, together with (2.4)
and (2.7), imply

po(v,8) < 0. (2.20)

Obviously, this condition is satisfied, if for the incomplete EOS
po(v2e) = —(y—T)pfo <0 and pi(v.e) = T > 0 (2.21)
hold along an isentrope. This is equivalent to
0<T <A, (2.22)

In many applications and investigations the inequalities (2.21) and (2.22) are explicitly
assumed to be true. However, these constraints might exclude physically admissible states,
since they are only sufficient but not necessary for (2.20). For instance, there exist ma-
terials for which T' > 0 is violated (e.g. water near 0° C and 1 bar). Nevertheless, there
arise some constraints for 4 and I' not only induced by thermodynamics but from the
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existence of the Riemann solution as we will derive in the subsequent sections. At this
point, we only assume (2.20) to be satisfied by the incomplete EOS instead of (2.22) in
view of thermodynamic consistency.

Finally, we want to remark that in view of analytical investigations in the context
of the Riemann solution we need the third derivatives of the EOS p(v,s). These partial
derivatives exist, since we assume that the energy function (2.1) is four times differentiable.



3 General Construction Principles

Before presenting a Riemann solver for the Euler equations, we summarize for the
convenience of the reader some well-known characteristic construction principles for
strictly hyperbolic systems of conservation laws, following essentially the work of Liu
[Liu74, Liu75, Liu76a, Liu76b]. Since this part is primarily based on analytical arguments
it is to offer a guide line for the subsequent discussion of the specific Euler equations
mainly based on physical arguments.

3.1 The Riemann Problem for Systems of Conservation Laws

Systems of conservation laws in one spatial dimension can be written in the form
u; + f(u), =0 (3.1)

where u : IRy x IR — D C IR" denotes the vector of n conservative quantities and
f : D — IR" is the flux vector which is supposed to be sufficiently smooth, i.e., f € C3(D).
Here, D C 1R" is the admissible phase space. Furthermore, the system is supposed to be
strictly hyperbolic, i.e., there exists a complete set of eigenvalues M\g(u), & =1,...,n, of

the Jacobian A(u) := df(u)/0u such that
Mu)<...< X (u) VYueD (3.2)
and corresponding right eigenvectors r(u) and left eigenvectors I (uw) of A(w) such that
U(w)riu)y=26y; 1<k,j<n, YueD. (3.3)
Hence, there exists an eigenvalue decomposition of A(w)
L(w)A(u)R(w) = A(w) YueD (3.4

where the rows of L are the left eigenvectors and the columns of R are the right eigen-
vectors.

In the literature, the eigenvalues Ay are called characteristic velocities corresponding
to the characteristic k—field which is characterized by the nonlinearity factor

ap(u) = Vyr(u)ryg(u) VYueD. (3.5)

Whenever oy, vanishes for all w € D then the k—field is called linearly degenerated. However,
if o), does not vanish throughout the admissible phase space, the k—field is called genuinely
nonlinear. In general, the k—field is supposed to be either linearly degenerated or genuinely
nonlinear. Here, we also consider the case of a non—genuinely nonlinear field, i.e., ay locally
vanishes at certain points of the phase space. To be more specific, we assume a (n — 1)-
dimensional hypersurface M C D to exist where the nonlinearity factor vanishes, i.e.,
arlm = 0, and, in addition, it separates regions Dt, D~ C D such that ag|p+ > 0 and
aglp- < 0, respectively. Moreover, we demand that the trajectories defined by w'(3) =
ri(w(f)) intersect M only at isolated points. Finally, we assume that the characteristic
fields are simply degenerated on M, i.e.,

Br(u) := Vyai(u) ry(u) # 0 YVue M.
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The Riemann problem to (3.1) is given by imposing the piecewise constant initial data

B u , r<0
u((),:z;)—{ w, x>0 (3.6)

for two states u;, u, € D. Obviously, the solution of this problem is in general not differ-
entiable but only exists in the weak sense according to the hyperbolicity of the underlying
equations. Because of the initial data it has to be scale-invariant, i.e., u(t,z) = const
along rays =/t = const. Therefore, the Riemann problem is inherently a onedimensional
problem which can be parameterized by the ratio x/t. Moreover, there may exist up to n
waves in the t—z plane which are propagating with different speeds, i.e., they are separated
in the time-space continuum (see Fig. 4), since the system (3.1) is supposed to be strictly
hyperbolic. These are referred to as k—waves since they correspond to the characteristic
velocities Ag.

raref. cd shock
uq /U9
u; =1Uyp U3z = Uy
u;=1uUg
r=10
Figure 5: k—curves connected in the pro-
Figure 4: Waves in the {—z plane jected phase space

As is indicated by Fig. 4, solving the Riemann problem requires to find appropriate
intermediate state w, € D, k = 1,...,n — 1, by which the states u; and u, can be
connected. Since the Riemann solution is scale—invariant, these states are lying on curves
Ur = Ur(&r), & < a, & = 1,...,n which are called k—curves. The basic idea is
to connect the left state w; and the right state w, by a suitable combination of these
curves in the admissible phase space. To this end, we move along the l1-curve starting
in Uy(é10) = u; up to a certain state w; = Uy(&). There we switch to the 2—curve
starting in Ujy(€30) = wy and continue along Us up to another state uy = Us(&y). This
procedure is successively repeated for all k—curves, k = 1,...,n (see Fig. 5). Hence,
solving the Riemann problem reduces to determine a unique parameter vector § € U :=
{&,...,6&:)T € R« |&| < a, k = 1,...,n} such that u, = wu,. In analogy to
Smoller’s proof in [Smo82], p. 335, for the standard case, i.e., the k-fields are either
genuinely nonlinear or linearly degenerated, it can be shown that there uniquely exists
an appropriate £ € U, provided that w, is sufficiently close to u;. The proof is based
on a smooth mapping T : D x U — IR" defined by T'(u,,§) := w, — u,. Then the
assertion follows by the implicit function theorem. Solving the nonlinear problem in order
to determine the parameter values corresponding to the different curves can be interpreted
as a multiple shooting scheme as it is frequently applied to two—point boundary value
problems.

We will see that the construction of the k—curves strongly depends on the behavior of
the k—field and the nonlinearity factor ay, respectively. In general, the k—curve is composed
of several types of elementary curves, namely, rarefaction curves, shock curves and contact
discontinuities. In the non—genuinely nonlinear case, there, in addition, another type arises
which is defined through a rarefaction curve and a family of shock curves. This curve is
called mized or composite curve. The composition of the k—curve by these elementary
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curves is determined by the propagation speeds of the corresponding states in the t—=x
plane. Here, the basic principle is connecting different elementary curves in such a way
that the corresponding waves in the time—space continuum are separated and do not
exhibit a multivalued solution.

3.2 Elementary Curves

In the following, we will describe the construction of the elementary curves and the com-
position of the k—curves. This investigation is independent of the initial states w;, u, of
the Riemann problem. We therefore denote the origin of every elementary curve by an
arbitrary state ug € D. After having described the composition of the k—curves, we finally
present the corresponding k—waves in the {—x plane.

3.2.1 Rarefaction Curves

In the case of a scale-invariant smooth solution u of (3.1), the partial differential equation
reduces to an ordinary differential equation for wi(¢) = w(¢, x) with ¢ = x/t. In particular,
if the k—field is genuinely nonlinear, then w; is determined by the initial value problem

(IVP) X
wy(§) = m’“k(uk(f))a £ € U(b), up (o) = uo (3.7)

in a neighborhood of ug, i.e., & € U(&) C IR is sufficiently small. This curve is called
rarefaction curve. Obviously, it is well-defined by (3.7) as long as the nonlinearity factor
ay does not vanish. This corresponds to the nonlinearity of the k-field.

For later use, we introduce the locus of all states w € D that can be connected to ug
by a rarefaction curve

Ri(ug) :=clos {u € D : u=wui(¢), £ € U(&), uy solution of (3.7)}

A characteristic feature of the rarefaction curve is the variation of the characteristic
velocity Ax which is monotonically increasing. In particular, it is determined by

A(ur(§)) =& = A(ux(§)) = Vure(ur(§))ur(f) = 1. (3-8)

Finally, we emphasize that the rarefaction curve must not be parametrized necessar-
ily by the ratio z/t. In general, a regular parametrization is preferable in view of the
algorithmic construction.

3.2.2 Shock Curves and Contact Discontinuities

A characteristic feature of hyperbolic conservation laws is the developing of jump disconti-
nuities caused by the nonlinearity of the flux. However, these discontinuities have to satisfy
certain constraints. A fundamental relation for two adjacent states ug, u € D, ug # u,
is named in honor of Rankine and Hugoniot, who derived it first in the context of gas
dynamics. This jump condition, in the following referred to as Rankine—Hugoniot jump
condition reads

o(u —up) = f(u) — f(uo) (3.9)

where o = o(ug, u) denotes the speed of the discontinuity.
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In the sequel, we want to characterize the family of states that can be connected to
uo by a discontinuity satisfying the Rankine-Hugoniot jump conditions. For this purpose,
we introduce the function Hy, : D x IR — IR" defined by

Hy,(u,0):= —o(u—ug) + f(u) — fuo).
Then the Hugoniot locus H(wo) to a given initial state wug
H(ug) :=clos {u e D CIR" : do0 € IR s.t. Hy,(u,0) =0}

consists of all states w € D for which a shock speed o = o(ug, u) exists such that (u, o)
is a root of the function Hq,. Obviously, a one parameter family of states (u, o) exists
when rank Hfuo(u, o) = n or, equivalently, either of the two conditions holds

o(ug,u) # N(u), Vi=1,...,n or (3.10)
o(ug,u) = A\;(u), foroner e {1,...,n} suchthat I;(u)(u—uo)#0.(3.11)

In this case, the implicit function theorem implies that the zero set of Hy, is a one
dimensional manifold in a neighborhood of w # wg, 0 = o(ug, w), whenever (u, o) is a
non—trivial zero of Hy,, i.e., Hy,(u,0) = 0, u # uo. However, there exist two kinds of
bifurcation points

a) u=ug and b) w # ug, o(ug,u) = A(u), L(u)(uw—uy) =0 (3.12)

referred to as primary and secondary bifurcation. Primary bifurcation has been investi-
gated by Lax in [Lax57] for strictly hyperbolic systems. He proved that there exist n
smooth curves uy, = u(€), k= 1,...,n with ur(£) = uo satisfying the jump conditions
(3.9) and

uli_}r%o or(wo, w) = Ap(wo).

Since the system is supposed to be strictly hyperbolic, these curves can be enumerated
with increasing velocity Ax(wo). The corresponding Hugoniot locus is denoted by Hi(ug).
This curve is tangent to the rarefaction curve Ri(ug). In principle secondary bifurcation
may occur. However, we will omit a discussion and refer to [Wen72b]. For the Euler
equations these states are not known to exist. Therefore, we assume throughout this
paper that

Liu)(u—ug) #0  VYVu,ug €D, u#ug (3.13)

holds along discontinuity curves.
If the k—field is linearly degenerated, then the curve Hi(uo) is called a contact discon-
tinuity which is characterized by

Proposition 3.1 Assume that the k—field is linearly degenerated. Then the following
properties hold along the discontinuity curve

up () = rie(ui(§)), €€ U(&), ur(bo) = uo, (3.14)
o= Me(ur(&)) = Me(ur(&o)) = const. V¢ (3.15)
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In the case of a not necessarily genuinely nonlinear field, the curve corresponding to
the Hugoniot locus is called a shock curve. Here a more thorough analysis is presented in
the following. This is based on Liu’s work [Liu75]. First of all, we specify the orientation
of the shock curve by the condition

du
d¢ £€=¢o

We emphasize that this parametrization is chosen here purely for the purpose of analysis.
A different parametrization may be preferable when deriving a constructive algorithm for
a concrete system, e.g., the Euler equations. We now consider shock curves in some detail
with special emphasise on the following issues: (i) admissibility of shock curves and (ii)

=u'(&) = ri(uo). (3.16)

existence of sonic shocks.

Admissibility of Shock Curves

Besides the Rankine-Hugoniot relations we need an additional condition characterizing
the physically meaningful states, since not all states of the Hugoniot locus are admissible.
In the literature, there exist several admissibility criteria. In view of the composition of
the k—curves, a criterion is preferable by which the shock speed o) and the characteristic
velocity A, are related. Here the Lax jump conditions are adequate

a) Mp(u) < op(ug,w) < Ap(wg), b) X—i(uo) < op(ug, w) < Ajpq(u) (3.17)

which have been derived by Lax [Lax57]. If the k-field is genuinely nonlinear, then the Lax
criterion is sufficient. However, for a non—genuinely nonlinear field it has to be replaced
by Liu’s extended admissibility relation

or(ug,u) < op(wg, w) Va € [ug, u] C Hi(uo). (3.18)

This relation implies that the shock speed is non—increasing along the admissible branch
of the shock curve. It relaxes the Lax condition in the sense that we can conclude

Ar(w) < op(ug, u) < Ap(ug). (3.19)

If the k—field is genuinely nonlinear, then the two conditions (3.17) and (3.18) are equiva-
lent, because equality cannot occur in (3.19).

Comparing (3.19) and (3.17), we notice that for non—genuinely nonlinear fields there
also may occur contact discontinuities where the characteristic velocity and the shock
speed coincide. These states are characterized by the following result from [Liu75].

Proposition 3.2 Assume that there exists no point of secondary bifurcation, i.e., (3.153)
holds, and let be w € Hy(wo) such that (3.17b) is satisfied. The parametrization of the
shock curve is chosen such that (3.16) holds. Then the following assertions are valid

a) If uip(&) # wo, then the two conditions are equivalent
i) op(uo,ur(€)) =0 i) ox(wo, ur(S)) = Ae(ur(§)) (3.20)

where the prime denotes the derivative with respect to the convention (3.16) of the
shock curves;
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b) Foru € Hi(uo), u # uo, there exist coefficients a; such that w—wg =3 a;r;(u)
and, in particular, ap # 0;

¢) The shock curve Hi(uo) is tangent to the rarefaction curve Ri(w) at w.

The details of the proofs are omitted. The interested reader is referred to [Liu75].
Furthermore, the admissible branch of the shock curve can be characterized with the
aid of the extended admissibility relation.

Proposition 3.3 Let be Hi(wo) := {u € Hy(uo) : signap = +1} where ay denotes the
coefficient in the expansion shown in Prop. 3.2. Assume that no point of secondary bifurca-
tion exists, i.e., (3.13) holds. Then the admissible branches are H, (o) for o} (ug, wg) > 0
and H} (uo) for o (uo, uo) < 0.

This result is essential in the algorithmic construction of the Riemann solution. Therefore
we sketch the relation between the shock speed and the characteristic velocity at wq. First
of all, we notice that H; (uo) N Hj (wo) = {wuo}, since ax # 0, u # ug. This means that
the shock curve is split up into branches connected in the origin uy. For w = ug we then
obtain

O'k(’lllo,’lllo) = )\k(uo) and O';C(’ll,o,’ll,o) =0.5 )\;ﬂ(uo) 7£ 0.
Therefore, the inequalities

!/

a) op(uo,ug) >0 = N (u) > op(ug,u) >0 or

!/

b) op (o, o) <0 = N (u) < op(ug,u) <0

hold in a small neighborhood of wg. The two cases are sketched in Figs. 6 and 7.

Mo we M Mo we M

Figure 6: Velocity profile Figure 7: Velocity profile

Then the Prop. 3.3 characterizes the admissible branch:
u € Hj (ug) is admissible, if and only if

or(to, u) < 0 & op(ug,u) > Ap(u),
whereas w € H, (uo) is admissible, if and only if
(g, u) > 0 & op(ug, u) < Ap(u).

For a different parametrization of the shock curve, we have to consider the relation between
the derivative of o} with respect to the parametrization (3.16) and the new parametriza-
tion, in order to determine the admissible branch of the shock curve with respect to the
new parametrization.

15



Another admissibility concept is based on mimicing the behavior of the thermodynamic
entropy across a shock which has to increase according to the second law of thermodynam-
ics. This entropy concept was introduced by Lax [Lax71]. It turned out to be equivalent
to the Lax jump conditions provided that the k—field is genuinely nonlinear.

The most general approach is based on the limit of the wviscous shock profile (see
e.g. [Wey49, Gil51, Liu76a, Liu76b, Peg86]) which results in equivalent admissibility con-
ditions. Here, the shock profile is considered in the limiting case of vanishing viscosity and
heat conduction in the context of fluid dynamics.

Existence of Sonic Shocks

Finally, we present the influence of a non—genuinely nonlinear field. This is quite obvious
for rarefaction curves. However, for shock curves a more thorough analysis is necessary.
From the following proposition we conclude that there exists no sonic shock if the k—field
is genuinely nonlinear.

Proposition 3.4 Let be u € Hy(wg) where the shock speed is sonic and choose the para-
metrization of the shock curve such that (3.16) holds. Then there exists a state @ € Hi(ug)
where the nonlinear field degenerates, i.e., ap(w) = 0 and this state lies on Hi(wuo) between
the origin ug of the shock curve and the sonic state w.

Proof: Since this result is not derived explicitly in [Liu74], we will sketch the principal
ideas how to prove this conclusion. First of all, we know by the Lax jump conditions
(3.17) that the characteristic velocity Ax has to be less than the shock speed oy, along the
admissible shock curve and, in addition, both have to be less than Az(ug) From this we
conclude that both velocities decrease monotonically in a neighborhood of u.

Next, we have to derive the relation between the derivative of A, and the nonlinearity
factor ag. To this end, we will make use of the analysis which is presented in [Liu74].
First of all, we expand the derivative of the conservative quantities along the shock curve
with respect to the right eigenvectors r;(uy), i.e.,

=1
Then the derivative of the characteristic velocity is given by
No(ue) = Vads(ue) wy, = b Vaghe (ur) vi(ug), (3.21)

=1

where the coefficient b, is known to be positive. Moreover, we know that the shock curve
Hi(wo) is tangent to the rarefaction curve Ri(w) in the state w = uj where the shock
becomes sonic, i.e., there exists some scalar factor ¢ € IR such that w) = éri(u) and
therefore by = ¢, b, =0, 1 # k. For u;, = u we conclude from (3.21)

N(u) = cag(u). (3.22)
On the other hand we obtain from standard analysis for genuinely nonlinear fields
Ne(wo) = 0.5 ag(ug). (3.23)

One of the two possible situations is sketched in Fig. 8. Since sign A} (w) # sign A} (uo)
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Ug u

Figure 8: Characteristic velocity and shock speed along H(uo)

and Liu’s extended admissibility relation (3.18) hold and, in addition, the coefficients in
(3.22), (3.23) are positive, we conclude sign ap(w) # sign ag(wg). Therefore oy changes its
sign, since ay, is a continuous function along the shock curve. Hence there exists a state
@ € Hi(uo) where the nonlinearity factor ay vanishes. O

3.2.3 Mixed Curves

Up to now, we have considered the genuinely nonlinear or the linearly degenerated k—
field. However, the rarefaction curve is no longer defined by (3.7) if it approaches a state
u = lim,_zux(§) € D with ay(w) = 0, i.e., the k-field degenerates. In order to continue
the k—curve construction, another curve in the phase space has to be derived which can be

connected to Ry(ug) in @w. For this purpose, we introduce the function C : [£y, ] xD — IR”
defined by

C(& u) = =de(ur(§))(u — ui(§)) + Flu) — fur(f)). (3.24)

Then the composite locus (see [Liu75]) is composed of all roots w of the function C and,
in addition, w # w () is the first point on Hy(wx()) satisfying

o(u(§), w) = M(ui(§)), (3.25)

i.e.

C(Ri,up) :=clos{u e D : 1.) 3FE€ &, st. C,u)=0 (3.26)
2) £ uy(€) first on Hy(uy(€)) with (3.25)}

The composite locus can be interpreted as the union of all states w € D where a state
u* € Ri(uo) exists on the rarefaction curve, i.e., u* = up(£*), £ € [€, €], such that (3.25)
holds for £ = £*. Moreover, the Hugoniot curve Hy(u*) is tangent to the composite locus
C(Ry,uo) in w. This situation is sketched in Figure 9.

As to the analysis of the composite locus, we can proceed analogously to the Hugoniot
locus. For this purpose, we first determine the derivatives of C'. A straightforward calculus

where we apply (3.4) and (3.25) yields
Ce=up(l) —u, Cu=R(u)(A(u) = Ap(ur(£))T) L(u).

Once again, a one parameter family of solutions of C({,u) = 0 exists in a neighborhood
of u # uy(¢), if rank C'(¢,u) = n. This is equivalent to

o(w, ur(€)) = Ae(wr(§)) # Ar(u) or (3.27)
o(w, ui(€)) = Ae(ur(§)) = A(u)  and  Lp(w)(w —up(§)) #0. (3.28)
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Figure 9: Composite curve

The implicit function theorem implies that the zero set of C' is a one dimensional manifold
close to w. In particular, we can choose the same parameter as for the rarefaction wave.
Hence, the derivative reads

w/(€) = R(u(€)) (A(u(€)) = Mu(un(€)1) ™" Lu(€))(w(€) — ux(€)). (3.29)

Similar to the Hugoniot locus, there also occur primary and secondary bifurcations, if
either one of the two conditions holds

a) w=wur(¢), b)uFur(l), o(w, up(€)) = A(ur(€)) = An(u), L(u)(w —up(f)) = 0.
(3.30)
The composite locus has been investigated by Liu to some extent. Here we summarize
some characteristic features in the following proposition.

Proposition 3.5 Let be u* = wui(&*) € Ri(ug) a state on the rarefaction curve and
u € Hi(u") the corresponding state on the mized curve such that (3.25) holds. Then we
obtain

a) The shock curve Hy(u*) is tangent to the mized curve C(Ry, uo) al w;

b) If the shock speed is sonic, then the mizved curve C(Ry, wo) is tangent to the rarefac-
tion curve Ri(u) at u.

The details of the proofs are omitted. The interested reader is referred to [Liu75]. However,
there remains an open question in Liu’s investigations which can be verified for a two by
two system provided certain assumptions hold (see [Liu74], Theorem 2.1). In the context
of a general hyperbolic system no proof is given in [Liu75].

Conjecture 3.1 We conjecture that if we approach locally @ on the rarefaction curve,
then the existing corresponding state on the mized curve approaches w as well.

From this we can conclude that the mixed curve is tangent to the rarefaction curve Ry (uo)
at v = w. Moreover, if we choose the same parametrization for the two curves, then
we run backward along the mixed curve when proceeding forward along the rarefaction
curve. Since our numerical investigations in the context of the Fuler equations confirm this
conjecture, we believe it to hold provided certain assumptions hold. A detailled analysis

will be given in [FFMV].
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3.3 Composition of k—Curves

We now describe how to construct a smooth curve in the admissible phase space D by an
appropriate composition of the elementary curves. There will be one curve for each of the
k—fields which is referred to as k—curve. We emphasize that the subsequent proceeding is
restricted to a possibly small neighborhood of a state uy € D, since the elementary curves
only exist locally. The construction principle is strongly related to the characteristic
velocities A, and the shock speeds o) corresponding to the rarefaction curves and the
shock curves, respectively. Therefore, we have to change the type of the elementary curve
in states where the derivative of A; vanishes or coincides with the shock speed, respectively.

If the k—field is linearly degenerated, then the k—curve coincides with the contact
discontinuity which is determined by (3.14). According to (3.15), the speed of the contact
discontinuity remains constant throughout the curve.

However, the k—curve construction becomes more difficult if the k—field is nonlinear.
In the following we describe one possible composition where we start the construction at
a state ug € D with ax(ug) # 0. The construction is graphically presented in the context
of the Euler equations in Sec. 4.3. From standard results in the genuinely nonlinear case
we know that in wo the shock curve Hyi(ug) is tangent to the rarefaction curve Ri(ug).
Furthermore, we know by Prop. 3.3 in which parameter direction Hj(uo) is admissible.
Here we first proceed along the admissible shock curve Hi(uo) originating at wg. Moving
along Hpi(ug) is admissible as long as Liu’s extended admissibility relation (3.18) holds.
Whenever we arrive at a state u; # uo where these conditions are violated, i.e., either of
the relations in (3.20) are satisfied, then we have to continue with the rarefaction curve
Ri(wy) which is tangent to Hy(wo) in wy. Here again, the sonic point is no point of
secondary bifurcation, since lx(wu1)(u; — ug) # 0 is assumed. Starting in w;, we now move
along the rarefaction curve Ri(wuq). This is admissible as long as the characteristic speed
increases, i.e. until we reach a state where

uy = limug(§) € D, ap(uy) = 0.
£€—=¢

If the rarefaction curve is tangent to the hypersurface M at u, but does not intersect M,
we proceed on the rarefaction curve. Whenever the rarefaction curve intersects M, then we
have to continue the k—curve construction by a different kind of elementary curve, since
the characteristic velocity becomes extremal. If we proceeded on the rarefaction curve
beyond wu, then the characteristic velocity is no longer increasing. This, however, would
cause a multivalued solution in the {—x plane. Instead, we continue with a mixed curve,
i.e., we connect a state of Ry(wuy) with a state on the mixed curve by a shock. Besides
bifurcation points (3.30), the mixed curve C(Ry, w;) is smooth and can be determined by
computing the roots of (3.24) in an appropriate way. For a two by two system of equations,
Liu proved that C(Ry,u;) joins Ri(wu1) tangentially in the state wy. We emphasize that
for n x n systems there is no explicit proof given by Liu. In [Liu75] he only refers to the
two by two case described in [Liu74].

Proceeding on the mixed curve, there may exist a state ug € D where this curve is no
longer admissible. Here we distinguish two cases

a) € € (€, &) such that Ag(us) = Me(wi(€)), us # ur(§), b) w3z = u;.

In the first case, the shock becomes sonic. Since Ui (us)(us — uwi(€)) # 0 holds, this state
does not correspond to a point of secondary bifurcation. Then we can continue with
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a rarefaction curve Ry(wus3) which is justified by (3.20). This procedure is in complete
analogy to the situation where we change from the shock curve to the rarefaction curve
Ri(ug). The second case occurs when we approach the state ws which is connected to
w; = ug(&o) € Ri(uy) by a shock. Then we have to continue the k—curve by the shock
curve Hy(ug), because us € Hy(wo).

In principle, the k—curve construction is completed by the above procedure which might
have to be repeated. All possible combinations of connections have been described.

3.4 Wave Construction

By now we only derived the Riemann solution in the admissible phase space. Finally
we need to explain how to transfer it to the time—space continuum. Since the solution of
(3.1), (3.6) is scale—invariant, the k—curves in the phase space can be transferred to the t—x
plane identifying the parameter ¢ with the ratio «/t. Here, we only consider the elementary
waves. This suffices, since the k—waves are separated in the t—x plane according to the
strict hyperbolicity of the underlying equations. The overall solution can be determined
by composing the solutions of all k—waves. For the Euler equations we graphically present
the different configurations in Sec. 4.3.

First we consider the case where the state ug is connected to another state u € Hy(uo)
on either a shock curve or a contact discontinuity. The corresponding solution in the t—z
plane reads

(3.31)

wy , v/t <op(wg,u)
u(t,x) =
u , op(ug,u) < az/t

where the speed of the discontinuity ox(wuo, u) satisfies (3.15) or (3.17), respectively. If uq
is connected to u € Ry(ug) by a rarefaction curve, then the solution is given by

Uo s $/t < )\k(uo)
w(t,z) =< wup(z/t) , Mp(ug) < z/t < Ay(u) (3.32)
u , )\k(u) < l’/t
where, in particular,
o= x/ti{\rﬁuo) ur(e/t), = x/tligj(u) (e /t).

If the k—field is genuinely nonlinear then the k—wave is given by either the shock wave
(3.31) or the rarefaction wave (3.32). However, if the nonlinear k—field degenerates, then
the wave structure becomes more complicate. First we consider the case where ug is
connected to w € C(Ry, o) by a mixed curve. Then we have to determine u* € Ry (uo)
such that (3.25) holds. The solution now reads

ug ,oxft < Ap(uo)
u(t,:z;) = uk(x/t) , )\k(’UJo) < l’/t < )\k(u*) . (333)
u , Ap(u) < aft

In contrast to (3.32), the solution is no longer continuous in a/t = Ag(u*), i.e.,

= t .
WS e WD) F
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As discussed in Sec. 3.3, there exist two different cases where the mixed curve C(Ry, uo)
stops and is to be continued by a rarefaction curve Ry(@o) or a shock curve Hy(wy),
respectively. For the first case, the corresponding wave reads

Uo s $/t < )\k(uo)
uk(x/t) , )\k(’UJo) < l’/t < )\k(ﬁ)
ﬁk(l'/t) , )\k(ﬁ) < l’/t < )\k(u)
, )\k(u) < l’/t

ult, ) = (3.34)

u

with u, € Ri(wo) and wr € Ryi(dg). In the second case, i.e., u € Hy(uy), the wave is
given by

w(t.z) = { uy , v/t <op(do,u) (3.35)

u , op(wo,u) < z/t
Since the k—curve may be composed of several parts of shock curves, rarefaction curves
and mixed curves the above procedure might be repeated where we start from the state
u. We are allowed to do this, since the corresponding characteristic velocities are non—

decreasing and the shock speeds are non—increasing. This implies that the different parts
of the wave do not overlap which is related to the uniqueness of the Riemann problem.
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4 The Riemann Problem for the Euler Equations

Based on the general construction principles, we now present a Riemann solver for the
Euler equations for fluids with non—convex EOS. This is based on general techniques that
also fit to strictly hyperbolic systems of conservation laws which we have summarized in
the previous section. Here we proceed analogously.

4.1 Governing Equations

Whenever the flow exhibits planar symmetry it is one dimensional. Then the fluid equa-
tions (1.1) — neglecting viscosity and heat conduction — reduce to

pt + (lou)l’ =0,
(pu)r + (pu*+p)r =0, (4.1)
(PE)e + (pu(E+p/p))s =0,

provided that the symmetry plane is perpendicular to the x axis and wu is the corresponding
velocity component. Moreover, the equilibrium pressure is defined by the EOS p = p(v, €)
which is supposed to be thermodynamically consistent (see Sec. 2).

Obviously, the resulting equations can be written in the form (3.1) with the conserv-
ative quantities w = (p, pu, pE)T and the flux f(u) = (pu, pu® + p, pu(E + p/p))T. The
characteristic velocities, i.e., the eigenvalues of the Jacobian of f, are given by

Ae(w) =u+ere with e,:=k—-2, k=1,2,3
and the corresponding nonlinearity factors read
ap(u) = Vyri(u) re(u) = e,Gefv, k=1,2,3 (4.2)

where 7, denotes the right eigenvector to A;. The structure of the associated k—field is
determined by ay. Here, the 2—field is linearly degenerated, whereas the k—fields, k£ = 1,3,
are nonlinear. In particular, the nonlinear fields are essentially influenced by the funda-
mental derivative of gas dynamics G, since it may degenerate in zeros of G. These states
are known to exist in the phase space and arise in non—convex EOS (see Sec. 2). According
to Fig. 3 we suppose that G only vanishes at isolated states of an isentrope. These states
build a twodimensional hypersurface M C D which is composed of all inflection points
of the isentropes in the p—v plane, i.e., p,,(v,8) = 0, pyw(v,s) # 0. This hypersurface
separates subdomains D™, DT C D, Dt N D~ = () such that aj|p- < 0, ax|p+ > 0 and
ar|am = 0. In addition, we know that the nonlinear fields are simply degenerated at states

of M, since

U2

Br(u) = Vyar(u) rip(u) = —ag(u) — %pwv(v,s) #0 Yuée M.

Numerous investigations have been performed in the standard case of an ideal gas.
There G is strictly positive and consequently the nonlinear fields do not degenerate. De-
riving the Riemann solver, we will therefore focus on the construction of the mixed curves
which come into play when G vanishes along a rarefaction curve. For completion we sum-
marize the construction of rarefaction curves and shock curves. Moreover, we present and
discuss to some extent the algorithmic realization. Here, the choice of parameterization
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will be of special interest. The pressure turns out to be appropriate. Finally, we determine
the intermediate states in the phase space. This simplifies for the Euler equations, since
the pressure and the velocity do not jump across a contact discontinuity. Therefore, it
suffices to look for the intersection point of the nonlinear curves in the p—u plane.

4.2 Elementary Curves

In the following we derive the underlying equations by which the elementary curves are
determined. In particular, we discuss the choice of an appropriate parameterization. More-
over, we present useful representations of the nonlinear problems by which the curves are
defined. These are helpful for their discretization.

4.2.1 Rarefaction Curves

In principal, the rarefaction curve is determined by the IVP (3.7). To this end, the right
eigenvectors of the Jacobian of the flux f have to be calculated. However, this is too
cumbersome for the Euler equations (4.1). Instead, it is more convenient to rewrite these
equations in terms of the primitive variables v, u, and e (see Sec. 7)

v+ uv, —ovu, = 0,
ur + vpy(v, €)v, + uuy + vp(v,e)e, = 0, (4.3)

€ + vpuy + ue, =

These equations are equivalent to the Euler equations in the smooth part of the solution.
In particular, for inverting this transformation no assumptions concerning the sign of the
partial derivatives p,(v,e) and p.(v,e) are necessary. We mention this since in many
investigations equations for p and s, respectively, are used instead of e. However, the
corresponding transformations impose some assumptions on these derivatives with regard
to inverting the transformation.

In terms of the primitive variables, the ODEs (3.7) read

dv 40 du 1 de L Up

which can be derived multiplying (3.7) with the Jacobian of the parameter transformation.
Here, we use the parametrization ¢ = x/t. By the fundamental derivative of gas dynamics
(2.2), we furthermore conclude

ds _de  dv _
e~ de T Pae T

i.e., the entropy remains constant. This means that the rarefaction curve coincides with

T 0,

an isentrope in the p—v plane (see Fig. 3). Since G is supposed to vanish only at isolated
zeros of an isentrope, the rarefaction curve can be continuously extended in these states.

In view of the Riemann solver, we are interested in the variation of characteristic
velocities Ag. These are related to the Lagrangian characteristic velocities Y by Ay =
(M — u)/v = ere/v and there derivatives are given by



i.e., \p, k=1,3, is strictly monotonically decreasing.
In order to remove the singularities in (4.4), we want to change the parameterization.
For this purpose, we consider the variation of the pressure which is determined by

d c A
% = e = 5’“ (4.5)
according to the EOS. Obviously, p is strictly monotone as long as the fundamental deriv-
ative does not vanish. We will see later that the rarefaction curve is not admissible
throughout the whole range of definition (see Sec. 4.3). Starting from a state ug € D
with Gg # 0, only the branch of the rarefaction curve with increasing parameter £ = /¢ is
admissible. This branch on the isentrope is bounded by the first zero of G in this direction.
Therefore, we can use p or a reparametrization of p as integration parameter instead of ¢
along the admissible branch. Then the derivatives with respect to an arbitrary parameter
0 read

dv 1 dp du 1 dp de pdp  dX G dp

BTN BB NdE dF3dF dB v

Finally, we summarize the basic results in

(4.6)

Proposition 4.1 Along the rarefaction curve the following statements hold:

a) The entropy is constant, i.e., an isentrope in the p—v plane coincides with a rarefac-
tion curve;

b) the following quantities are strictly monotone except atl states where the nonlinear
field degenerates: the pressure p, the specific volume v, the velocity u, the specific
internal enerqy e and the characteristic velocity Ay.

We want to point out that the notion rarefaction might be confusing in the context of
the Euler equations with non—convex EOS. In the standard case of convex isentropes, the
admissible branch corresponds to the expansive part where the specific volume increases
and the pressure decreases. In the non—convex case, this is reversed, i.e., the compressive
branch is only admissible. In order to avoid misunderstandings we therefore specify the
admissible branch of the rarefaction curve by expansive or compressive.

4.2.2 Shock Curves and Contact Discontinuities

Discontinuities are characterized by the Rankine—Hugoniot (RH) jump conditions
aAp = Apu), oA(pu) = A(pu® +p),  oA(pE) = Alpu(E + p/p)),

where we use the notation AA = A — Aq for an arbitrary quantity A. The Eulerian shock
speed is denoted by o. Introducing the relative velocity % := u — ¢ the RH conditions can
be written as

Alp) =0, A(pi* +p) =0, Alpi(e+p/p+u’/2))=0.

Applying the Leibnitz rule A(AB) = AAB + BAA with the average A= (A+ Ao)/2,

these equations can be transformed into the Lagrangian jump conditions
—oAv—Au=0, —cAu+Ap=0, —GAE+ A(up)=0, (4.7)

24



where 7 is the Lagrangian shock speed. These relations correspond to the Lagrangian
equations formally determined by the vector @ = (v, u, )" and the flux f(@) = (—u, p,u)”
which result when rewriting the Euler equations in Lagrangian coordinates (see Sec. 7). In
order to distinguish between quantities such as eigenvalues, shock speed and eigenvectors
corresponding to the Eulerian and the Lagrangian formulation, respectively, we label the
latter by a bar. For the Laplacian fluid equations the characteristic velocities read

Me(@) = epefv, k=1,2,3. (4.8)
Obviously, the Eulerian shock speed o, the Lagrangian shock speed @ and the relative
velocity @ are related by
7 =—pi=—p(u—0)=—plu —0).

In the following we distinguish between two cases. If & = 0 = X, then the discontinuity
is a contact discontinuity. This is characterized by

c=0<=pi=0<=plu—0)=0<=0c=u=»X\
from which we conclude
Au=10, Ap=0.

These relations will simplify the solution of the Riemann problem, since we can project
the phase space to the p—u plane.

The second case is related to @ # 0 which is supposed to hold for the remaining part
of this subsection. Then the Lagrangian conditions can be written in the form

A 1
=P Au=—Ap, Ae+pAv=0. (4.9)
Av T
The convexity of the energy e = e(v, s) implies ApAv < 0 where ” =7 holds if and only if

p=poorv=uvyor~y=0,ie., the state uy coincides with the critical point (see [MP89],
p. 91). Therefore 72 is positive and there exist two shock curves Hy(ug) corresponding to
O = Ep/ —Ap/AU, k= 1,3

The implicit function theorem implies the existence of a smooth shock curve in a neigh-
borhood of a zero w € D of (4.9) except for points of primary and secondary bifurcation
corresponding to (3.12). In the case of primary bifurcation two branches are known to
exist [LaxhT7]. Whereas secondary bifurcation only occurs if (3.12b) holds. These relations
are equivalent to

Avp L (4.10)
- + 2 v '
which have been derived in [Wen72b]. They imply
7 =pfv =t =X, ¥ =05TAp/p,

from which we conclude that secondary bifurcation can only occur in the case of sonic
shocks. However, in fluids flow of real materials this never seems to be satisfied (see
[MP89], p. 122) and we therefore exclude states satisfying (4.10). This is in agreement
with condition (3.13).

In order to determine the shock curve, it is useful to introduce the shock adiabatic or
Hugoniot curve of states (v, e) such that

h(v,e) :=¢e—eo+ 0.5(p + po)(v —vy) = 0. (4.11)

The zero-set is a projection of the shock curve in the v—u—e space into the v—e plane. It
is characterized by
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Proposition 4.2 Let be (v,¢e) a zero of (4.11). Then there exists a neighborhood of (v, €)
where the Hugoniot locus is a one parameter family of states which can be parametrized by
v or e, respectively, provided that

I' Av I' Av Avp
| — | —
L B S ( LRI >

hold. Furthermore, there exists no point of bifurcation, if we exclude points satisfying

(4.10).
Proof: The starting point are the partial derivatives of (4.11) given by

he =k, and h,=pk, ——Av <)\k . 0k> =" (k . %% (Xk —Ez> (v — r)) . (4.12)
where the coefficients k, and k, are defined by
k, —1—|—£&, ky —V—E% (4.13)
2 v 2 p
Here we make use of the equations (2.21) and incorporate the relations Xi = yp/v =

ppe — pu as well as 73 = —Ap/Av. Then the assertion follows by the implicit function
theorem. O

In the subsequent investigation, those states are of special interest for which the shock
speed @ and the characteristic velocity A coincide. For the Hugoniot curve the following
results hold.

Proposition 4.3 Let be (v,e) a zero of (4.11) such that \p(@) = Fp(wo, @) and v #
0.5TAp/p. Then we conclude

a) hy =2 (3= 522) = ph. #0,

b) = Npm) A0, E=2M 4y

Proof: Incorporating the assumptions into (4.12) we immediately obtain a). In order to
verify b), we take the derivatives of the EOS (2.21) and the Hugoniot curve (4.11) with
respect to v and e, respectively. From these derivatives we determine

2 CAv (Y2 =
dp de k-2 dp _ de Nk, — 22 (X - 72)
d_:pv‘l’ped_:_—k)\k and d—:pud—+pe: ,
v v vk e v ph, — LAv < o k)
respectively. Obviously, these relations imply assertion b). a

Except for the bifurcation points, the Hugoniot curve is a smooth curve which we will
examine in some detail. Here we are particularly interested in aspects with regard to the
algorithmic realization. To this end, we recall some well-known analytical results for the
convenience of the reader. These are partially derived in [Bet42, Wey49, Wen72b, Liu75,
MP89] among others. In the sequel, we consider the following items more carefully
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1

derivatives of certain physical quantities with respect to the shock curve parameter,

2

the correlation between shock speed and characteristic velocity,

4

)
)

3.) the existence of a sonic shock,
.) local and global admissibility criteria,
)

5.) physical constraints to be imposed on the EOS.

Derivatives of Physical Quantities

In order to determine an appropriate parameterization as well as to characterize the ad-
missible branch of the shock curve we need to know how certain physical quantities vary
along the shock curve. To this end, we determine the derivatives with respect to an arbi-
trary shock curve parameter a. We emphasize that this parameter is not necessarily the
time-space ration ¢/x as is chosen for the rarefaction curve. First of all, we conclude from
the Hugoniot curve (4.11) and the EOS (2.15) the relation

PR L

Pda vda’

(4.14)

where we make use of the equations (2.21) which correlate the partial derivatives p, and p,
with the dimensionless quantities v and I'. Moreover, we have to incorporate the relations
Xi = */v? = yp/v = pp. — p, for the characteristic velocity and 73 = —Ap/Av for the
Langrangian shock speed. In all of the subsequent derivatives we will always make use of
these relations.

In the sequel, we assume that k, is positive. For a perfect gas it is known to hold. We

will discuss later the constraints for a real gas arising from this assumption. Then we can

resolve (4.14)
dv  vk,dp k, dp

— =P _ . (4.15)
da pk, da )‘ikp + %%(52 _ )\i) da
From the fundamental identity of gas dynamics (2.2) we furthermore derive
ds L vl f— _,\Apdp
— = ——— — ——. 4.16
dee 2T pk, < k Uk) o7 da ( )

where we apply (4.11) and (4.15) and, in addition, make use of the definitions for the
Lagrangian shock speed (4.9) and the characteristic velocity (4.8), respectively. With the
aid of (4.15) and (4.16), we then conclude from the fundamental thermodynamic identity
(2.2)

de vl 2 dp

=2 (o, — 05800 — 7)) 2. 4.1

T = i (P 05800 7)) o8 (4.17)
Alternatively, this can be obtained from (4.15) and the Hugoniot relation (4.11). Next,
we determine the variation of the shock speed 7, defined by (4.9)

doy, 1in—Ez1dp_ T 1 ds (4.18)
do 2p Avk, Grda  (Av)2T da '
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where we apply (4.15) in the first part. The second representation immediately follows
from (4.16). With the aid of (4.18) we conclude after some lengthy calculations

du 1 k,ai\ 1 dp v [((y=D)p , po 1 dp
Rk (S ITDIA R I = +5; ) ——. 4.1
da 2 ( +7kv Xi) o da kaxi < PR —I_Uk) G da (4.19)

Finally, we present the derivative of the characteristic velocity A, along the shock

curve. To this end, we derive the relation Xi = pp. — p, with respect to the shock curve
parameter «. Incorporating the fundamental thermodynamic identity (2.2) as well as
(2.17) with f = p, we end up with

dy 1 dv ds g dv Pus(v,8) ds
_ (v, 5) _ Lus\¥r )

dxp _ 1 D (o) v,s)as 4.2
do 20 T pulv:s) v da 2, do (4.20)

da da
with
va(Uv 5) == <p2(v, e) + ppee(vv e) - pv@(v7 €)> T.

The derivatives which have just been derived are of particular interest at states u of
the shock curve Hy(ug) where the shock speed and the characteristic velocity coincide.

Proposition 4.4 Assume that k, is positive. Let be uw € Hy(uo) such that (@) =
r(wo, w). Then the following statements hold:

a) The derivatives at w are given by

dv 1 dp du 1 dp de p dp ds
- — === — = and

do~ "3da’ da " %da’ da " Yda' da

b) the shock curve Hi(w) is tangent to the rarefaction curve Ry(w) at w. In particular,
we obtain for the Fuler equations in Lagrangian coordinates

W @)L (4.21)

The relations in a) immediately result from (4.15), (4.19), (4.17), (4.16) and (4.20). In the
latter case, we also apply (4.2). Then assertion b) can obviously be concluded comparing
the relations in a) with those in (4.6). We want to remark that (4.21) even holds for

general systems if we choose the parametrization dp/da = Xi at wo (cf. Prop. 3.2, (3.16)),
for instance o = —e.
Shock Speed and Characteristic Velocity

The connection between the characteristic velocity A, and the shock speed 7 is of special
interest in the construction of the Riemann solver. With the aid of the previous discussion
concerning the derivatives along the shock curve we are now able to prove

Proposition 4.5 Assume that k, is positive. Let be uw € Hy(uo) such that (@) =
or(wo, w). Then the following statements hold:
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CL) Ek(ﬁovﬁo) = Xk(ﬁo);
b) If w = wug, then the derivative of the shock speed at this state is given by
dz 1 dp  1dX dz
Th _ — (@)L = 2% nd elsewhere by Tk _ 0;
de 2%, (o) dee 2 da

o) do =
In addition, one has doy/do # 0 provided that Gy # 0;
¢) If uw # ug, then doy,/da =0 if and only if T)(Wo, &) = M\ (W);

d) If w # wg, then the entropy s becomes extremal, if and only if the shock speed Ty
becomes extremal.

Proof: For simplicity of notation we denote the derivative with respect to the shock curve
parameter a by a prime. Furthermore, the origin ug of the shock curve corresponds to
the parameter value ap. In order to prove assertion a) and b), respectively, we need to
consider the limit & — ag of certain ratios where the nominator as well as the denominator
tend to zero.

a) The shock speed @ can be written as

mo(Fst) - (i)

where «a,, a, € (ag,a) denote certain intermediate parameter values. For o — ag the

derivatives tend to p'(ap) and v'(ag) = —p’(ozo)/Xi (o), respectively, where we apply (4.14)
and (4.15). This immediately implies the assertion.
b) Using the notation A\i(a) := A\g(u(a)), r(a) := 74(Uo, wW(a)), we notice that

A(@) = Fr(a) = Ai(a) = Mi(ao) + Tx(ao) — Ti(a),

since a) holds. Next, we observe that the limits

4

lim Ae(@) = Ai(ao) — lim Ay (o5)(a — ao) _ _pw_(vo, s0)
oo v(a) —vp(ag)  ame (an)(@—a0)  2M(ag)

oy k(@) = Tr(ao) o Trlez)a—ao) - Ti(ag)ye
ozligzlo U(Oz) — Uk(Oéo) N Ofligflo U/(Oéu)(a - aO) B p/(Oéo) )\k( 0)

hold. We now incorporate these limits as well as assertion a) when performing the limiting
process in the first relation of (4.18):

!

7 (a0) = 1 <puu(U0,So) _ Fk(ao)xz( 0)> Ak(ao) + 7o) /(a)

ZXi(ao) 2N (a0)  P(ao) " ! ok(ao) me

Puu Vo, So p’ (7)) —
s 22— o).
p(o
From this relation the assertion immediately follows upon using (2.14) and (4.2). Moreover,
doi/da # 0 since Gy # 0 is assumed to hold and dp/da # 0 because of Prop. 4.3.
c), d) These assertions can be concluded from (4.18) and (4.16), respectively. Here, the

assumption of thermodynamic stability is essential. This requires the entropy to be a
concave function of the specific volume v and the specific internal energy e. a

Finally, we want to remark that the relations @ (ag) = Ax(ag) and 7, (ap) = 0.5 X;(ao)
even hold for general systems (cf. [Liu75]).
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Existence of Sonic Shocks

Up to now, we have characterized shocks where the shock speed becomes sonic. We now
want to investigate under which circumstances there exists a sonic shock. The following
proposition states that a necessary condition is that the nonlinear field degenerates along
the shock curve.

Proposition 4.6 Let be u € Hy(uo), u # uo, such that M\ (@) = o4(wo, w). Then there
exists a state w € Hy(ug) between wg and w where the nonlinear field degenerates.

This proposition implies that there exists no sonic shock for a genuinely nonlinear field,
which also holds for general systems. The proof is similar to that sketched for Prop. 3.4.
Since we are dealing with a special system the proof simplifies and can be given in full.
Proof: For simplicity we assume that w is the first state on the shock curve Hi(ug) where
the shock becomes sonic. Then we conclude from (4.16) and (4.18) that the shock speed
7, varies monotonically between ug and w. Furthermore, we know from Prop. 4.5b) that
the derivative of 7, is only half of the derivative of A; at wo where, in addition, A; and 7}
coincide. Then there exist two possible situations depending on the sign of the derivatives
at ug. One of the two situations is sketched in Fig. 8. From this we conclude that the sign
of X;(ﬁo) is different from that of X;(ﬁ) Together with Prop. 4.4 a) this implies that also
ar (o) and ag(w) differ in sign. Hence, there exists a state @ € Hy(uo) between uy and
u where ay, changes its sign, i.e., ag(w) = 0. O

Admissibility of Shock Curves

Although (4.14) holds along the whole Hugoniot curve, we are only interested in the
admissible part. In order to determine the admissible branch, we consider the jump in
entropy in terms of the pressure jump. This is locally given by

As = 11_2T0pvv(U07 30)(Ap)3 +0 ((Ap)4>

(see [Tho72], p. 318). Since the second law of thermodynamics has to be satisfied, the
pressure needs to increase when the isentrope is convex. Moreover, density also increases
because of (4.9). This is the standard case of a compression shock. In the non—convex
part of the isentrope, however, the signs change and pressure as well as density decrease.
Then the admissible Hugoniot curve corresponds to an expansion shock. Both cases can
occur when applying a non—convex FOS. Hence, the admissible branch can be determined
by the pressure variation in a neighborhood of the initial state .

According to the second law of thermodynamics, the entropy increases across the shock.
Hence, the admissible part of the Hugoniot curve is characterized by ds/da is greater or
less than zero. Here we emphasize that the sign depends on the parameter choice. Since
« is arbitrarily chosen, we cannot specify the sign. This implies that the pressure has
to be monotone along the admissible branch. Moreover, Ap does not change sign, since
otherwise the pressure would have become extremal before. Consequently, we can choose
p as parameter of the admissible branch. This is the key result of the previous discussion.

In addition, the variation of the shock speed ) and the entropy s along a shock
curve are directly related by (4.18). In analogy to the entropy, the shock speed varies
monotonically along the admissible branch as is predicted by Liu’s extended admissibility
relations (3.19). It is extremal, if the shock becomes sonic. This coincides with the state
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where the second law of thermodynamics is violated marking the end of the admissible
branch. Hence, we can use the variation of the shock speed as admissibility criterion of
the shock. This is in agreement with the Lax jump conditions (3.17).

The main results of the previous discussion are summarized below.

Proposition 4.7 Assume that k, is positive. Then the following statements hold:
a) The admissible branch of the shock curve Hi(uo) is characterized by

i) Go>0 = Ap>0, Av <0 (compression branch),
ii) Go <0 = Ap<0, Av >0 (expansive branch).

b) Along the admissible branch of the shock curve Hy(wuo) the pressure p, the entropy
s and the shock speed T are monotone; the velocity w is monotone provided that
0<T <H.

Physical Constraints

Up to now, we have made the assumption that k, is strictly positive. We will now derive
sufficient conditions for the EOS. These lead to physical constraints with respect to the
material for which the Riemann problem can be solved.

First of all, we notice that k, and k, are positive close to the initial state uo. Moreover,
they do not vanish at the same state. This is only possible in states where secondary
bifurcation occurs which are excluded in our investigations. Furthermore, these coefficients

I' Av a2 I' Av { &2
ky=~1+—-""—) =~k +=—[ 22— . 4.22
(14538) = (o5 (3) e

k k

If the shock is sonic, then this simplifies to k, = vk,.
From the local behavior of the pressure we furthermore conclude that k, is positive
along the admissible branch provided that

0<T <2y. (4.23)

are related by

This can be verified with the aid of Prop. 4.7 b). We emphasize that I' > 0 is only required
for the non—convex case. In the convex case I' < 2+ is sufficient. This condition seems
to be satisfied for all known materials. Moreover, it excludes secondary bifurcation (see

[MP89], p. 97). For p,(v,e) < 0 it can be proven to hold.

4.2.3 Mixed Curves

The rarefaction curve Ri(ug) is no longer admissible when it approaches a state @ € D
where the nonlinear field degenerates, i.e., G = 0 (cf. (3.7), (4.4)). At this point we have to
switch to the mixed curve. This curve is determined by the rarefaction curve and a family
of shock curves, since it is composed of all states w € Hi(u*) where a state u* € Ry(ug)
exists such that op(w,u*) = Ag(u*). Moreover, u # w* is the first point on Hi(u*) where
this equality holds. In Lagrangian coordinates these conditions are equivalent to

u € H(u) <= h(v,e) =0 < e—¢"= —%(p—l—p*)(v —v%)
(4.24)

(@ @) = \(T@) = v—v" = —(p—p) /AT
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In view of an algorithmic construction the definition which follows Liu’s concept of the
composite locus is not suitable. Instead, we derive a different construction based on solving
an IVP. For this purpose, we consider the following items in some detail:

1.) characterization of the composite locus by a one parameter manifold,

2.) derivatives of certain physical quantities with respect to an arbitrary parametrization
of the mixed curve and

3.) tangential connection of the rarefaction curve and mixed curve at u = wu.

Characterization of Composite Locus

The starting point are the conditions (4.24). Assuming that the rarefaction curve is
parametrized by an arbitrary parameter 3 then these conditions can be rewritten as

1 2 _ 2 _
hl(vvevﬁ) 3:€—€k—§}iz _pk :07 h?(vvevﬁ) ::U_Uk—l_fg _pk :07 (425)
AW oy

where the states w* = w, = wi() on the rarefaction curve are uniquely determined by
the parameter 3 indicated by the index k. The states without a label correspond to the
composite locus which, in particular, lie on the shock curve Hi(ay). This holds except for
the characteristic velocity A\;. Here, we have to be more precise, i.e., we need to specify
the state where this quantity is evaluated. Then the composite locus is characterized in a
neighborhood of a zero of h = (hy, hy)T by the following proposition.

Proposition 4.8 Let (v,e,3), v # vp(3), e # ex(3) be a zero of (4.25). Then there exists

a neighborhood of (v, e, 3) where the composite locus is a one parameter family of states

provided that Xk(ﬁ) + Xk(ﬁk(ﬁ)) = o,(ur(0), w).

Proof: First of all, we determine the partial derivatives of h given by

() e _|_
o = == hyo=1— P py =T 2pkhw’
A () Ay (@) (4.26)
U € - d ‘
T S T =L
)\k(uk) )\k(uk) Uk)\k(uk) ﬁ

where we apply the derivatives (4.6) along the rarefaction curve. From these we determine

the determinants

2 2

A(w) — A (u — d
0N o nso e, 9)) = —2, LpL Gk

A () vihy(wy) 48

det(Oh/0 (e,v)) =

(P — px) Gr dpk S
det(Oh/0(v,03)) = ——————— (2pk, — (v —v) [ A (w) — A\ (u .
(@hf2(0,0) = =S 75 20k = (v =) (Fa(am) — o (am0)) )
Here we apply (2.21) and (4.24). The quantity k, is defined by (4.13) where we replace wg
by @ (). Then the assertion immediately follows by the implicit function theorem and
(4.22). O
If Ap(@) # Me(up(B)) = 7r(wr(B3), ) holds, then this curve can be locally parametrized
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by (3. Provided that there exists no state satisfying (4.10), it can be locally parametrized
by e or v, respectively, if \p(@) = M\p(wp(B)), @ # wy.

With the aid of Prop. 4.8 we can now characterize the states where the characteristic
velocity Ar(@) and the shock speed &y (W, &) coincide. Here the derivative of the pressure
is of special interest with regard to the algorithmic construction of the mixed curve.

Proposition 4.9 Let (v,¢,3), v # vi(B), € # er(B) be a zero of ({.24) such that Ai(w) =
Ae(@i(B)) and k, # 0. Then we obtain
2
dp _ A () dp 2
- d — = =) .
de Dk o dv (%)

Proof: According to Prop. 4.8 we can locally parametrize the mixed curve at (v, e, 3) by
v or e, respectively. Differentiating (4.25) with respect to v and e we obtain

de 11 —2,_ . =2, dv\ !
= s (k= o (R - Rw)) = ()
~2,__ 2, 2, -1 -1
ap LA () — (@) A (wi) v (dpr _dp (dv
dv 2 P — Pk Grk, dpg ~ de \ de '
These relations are used when differentiating the EOS (2.15) which yields

D ¥ (fi@ g k) (e = 50 =) (Rica) - Xi(m)))_l

X, (@)
and
dp _ N(@) ( (@) )
—=— = —1+k,],
dv k, X, ()
respectively. From this we conclude the assertion. O

Derivatives of Physical Quantities

Since we want to characterize the mixed curve by a system of ordinary differential equa-
tions, we need to know the derivatives of certain physical quantities along the mixed curve.
Here we only consider states on the mixed curve where Xk(ﬁ) + Xk(ﬁk(ﬁ)) holds. The
derivation is quite similar to that in the context of the shock curve in Sec. 4.2.2. Again, we
incorporate the relations Xi(ﬁ) = ¢?/v? = yp/v = pp. — p, for the characteristic velocity

and &3 = —(p — px)/(v — vg) for the shock speed where we have 7; = Xi(ﬁk) Moreover,
we will make use of the equations (2.21). In the following we assume that the mixed curve
is parametrized by an arbitrary parameter a. Here we would like to emphasize that now
the parameter § of the rarefaction curve depends on the parametrization of the mixed
curve by the definition (4.24), i.e., § = B(«) and, hence, wi(3) = wr(S(e)). In contrast to
Sec. 4.2.2, we first determine the derivatives of e and v along the mixed curve from (4.25)

de P — Pi 1 ( 1 2, =2, ) d () dp
L= - ky — (v — o) (A () = X it
il e e wrnd GO LU (i) = X)) ) =5 0
v P — P 1 d\(ay) dj
da "N@) - X)) (@) d8 - da
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The above equations are now applied when differentiating the EOS (2.21)

dp _ 5 P=p (@) () df

=2= — — = . (4.27)
da N@) - Np(wy) ¥ M(wr)  dB da
Then we can rewrite the derivatives of e and v as
dv vk, dp de vl 1 2, =2, dp
— =, —=—— ——(v— A —A —. 4.2
ot =t (- g @ - N ) . 2s)
From the fundamental identity of gas dynamics (2.2) we furthermore obtain
ds Lol /2 —,_ \p—prdp
—=———1A —A . 4.2
dee 2T pk, < H(@) k(uk)> Xi(ﬁk) da (4.29)
Next we determine from the relation ; = —(p — pi)/(v — vy) the variation of the shock
speed
A7, Lo (@) = N(@) Ldp 1ol N@) —X(m)_dp T 1ds
do 2p (v—wvp)k, Trda 2pk, (p— pr) deoz_(v—vk)ZEkdoz'
(4.30)
This relation is applied when calculating the velocity variation from « = uy + (p — pr) /T
d —T — 1 d
T (W By p2ey Ai(m)) —2 (431)
a2k (w) v v o da
Later on, we also need the variation of the characteristic velocity
B M@t i .
do v do 2\ () do

which immediately follows by (2.12) and (2.14).

Comparing the above derivatives with those derived for the shock curve in Sec. 4.2.2
and taking into account that Ay(w@y) = &x(Ws, w), we immediately obtain the following
proposition.

Proposition 4.10 Assume that k, is positive. Let be w € C(Ry,uo) a state on the mized
curve and u* € Ry(wo) such that w € Hy(w*). Then the shock curve Hy(u*) is tangent
to the mized curve C(Ry, wo) al u.

In analogy to Prop. 4.4 we also can characterize the mixed curve at states w € C(Ry, uo)
where the shock speed and the characteristic velocity coincide.

Proposition 4.11 Assume that k, is positive. Lel be u € C(Ri,uwo) and wi, € Ri(uo)
such that w € Hi(u*) and Tr(w*, @) = \(w*) = \p(w). Then the following statements
hold:

a) The derivatives of the mized curve at w are given by

dv 1 dp du 1 dp de p dp ds
— ==, —==——, —=—=—, —=0 and
do X, do do A do do X, do do
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dXi G dp __(_)1 dp
do v g da = art Xidoz’

In particular, we obtain for the Kuler equations in Lagrangian coordinates

W ) =2 (4.33)

b) If w # u*, then the composite curve C(Ry,uo) is tangent to the rarefaction curve

Ri(uw) at u.

c¢) If the composite curve C(Ry,wo) is attached to the rarefaction curve Ry(ug) al u,
then the tangent directions of both curves coincide.

The relations in a) immediately result from (4.28), (4.29), (4.30) and (4.31). The assertion
b) and ¢) can obviously be concluded by comparing (4.33) with the derivatives (4.6).

Finally, we summarize some characteristic features of certain physical quantities along
the mixed curve which are similar to those derived for the shock curve in Sec. 4.2.2.

Proposition 4.12 Assume that k, is positive. Let be uw € C(Ry,up) and u* € Ry(uo)
such that w € Hy(u*). Then the following statements hold:

a) If w # a, then the entropy s becomes extremal if and only if the shock speed T},
becomes extremal, i.e., T, (W, W) = A\p(@).

b) The pressure p is monotone as long as op(w*, @) # M (@).

¢) If 0 < T <, then the velocity u is monotone as long as o (w*, w) # A(w).
These properties follow from (4.29), (4.27) and (4.31).

Connection of Rarefaction Curve and Mixed Curve

So far, we have characterized the composite locus by a curve and have derived the deriv-
atives of certain physical quantities along the mixed curve. But it is not obvious that the
mixed curve C(Ry, uo) and the rarefaction curve Ri(wug) are attached at w. For a two-
by—two system Liu verified this property imposing certain constraints on the derivatives
of the fluxes (see [Liu74]). However, there exists no explicit proof for the general case (see
[Liu75]). Recall that at this point we assume that the curves are attached. We will identify
next necessary conditions on the parametrizations arising in this case. The starting point
for this investigation is the connection between the parametrizations of the two curves.
These are related by the condition u(a) € Hy(ur(3)) according to Liu’s definition of the
mixed curve. By this relation the parametrization 3 of the rarefaction curve depends on
the parametrization a of the mixed curve, i.e., 3 = f(«), by which the two curves are
glued. From (4.27) we conclude

dp 1) — N(@)
doo 2 P — Pk k,

(@) (d(@)\ " dp
X (@ )( dp3 ) do (434

which is well-defined for w # @y and ai(w) # 0. In the case of w = w, = w with
ar(u) = 0, see (Al) below, we now will derive the limit of the derivative (4.34) at the
state w. For this purpose, we consider the following setting
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(S1) @y, = wi(B), B € [Bo, B] and T = w(ar), o € [&, @] with o < B =4 < @,

N

(S2) dp dpg 1,2, exist for o € [&, @] and 3 € [Bo, 3], respectively,

dat? dﬁi 9
(83) 3_2 a=d& % 07 % PN % 07
B=p
S4) de| ) 5,
( ) doz o= dﬁ ﬁ:B

Condition (S1) means that we independently parametrize the mixed curve w = w(a) and
the rarefaction curve @, = wi(3). Without loss of generality we shift the two parameter
domains such that they are attached at B = &. Moreover, we choose the parametrization
on each of the two curves under consideration such that they are twice differentiable
according to (S2) which, in particular, implies

d>py
“ 2
p=p

dpg

.0 dp

A=

1) 2],

do la=a& da?

~ bounded.
B=p

We emphasize that in the proceeding investigations we only considered the first derivative
of the physical quantities along the different types of curves. However, we assume the
specific energy e to be four times differentiable which implies that the third derivatives of
the EOS exist (see Sec. 2). Incorporating this knowledge into the above discussion of the
curves, we conclude that the second derivatives also exist. Finally, we assume that the
parametrizations are regular which implies (S3) and, in addition, we choose the orientation
of the parametrizations such that (S4) holds.

By the definition of the mixed curve, the two parametrizations are implicitly linked to
each other according to

(55) w(a) € Hi(ur(F)), i.e., § = f(a).

For the subsequent discussion we therefore have to keep in mind that the parametrization
of the rarefaction curve is no longer independent but depends on the parametrization of
the mixed curve, i.e., wx() = wr(B(«)). Hence, we have to apply the chain rule when
taking the derivative of a quantity on the rarefaction curve with respect to a.

Next, we assume that the rarefaction curve and the mixed curve are attached at the
state @ and, moreover, if we are approaching @ on the mixed curve the corresponding
states of the rarefaction curve are also approaching @. In terms of the above setting this
assumption reads

N

(A1) wp(3) = & = w(d), i.e., limss B(a) = 3

which is in agreement with Liu’s results for a two—by—two system of equations (see [Liu74]).
From the settings (S1) — (Sh) as well as assumption (A1) we now conclude by the chain

rule
dpi _ dpedB  dpr _ EpedB | dpi &5
do dp do’  da? dp? da  df da?

and the regularity of the parametrization

(C2) 48| Lo

do a=da" E

. bounded,

A=

(C3) Tim @, (uy(3)) 22 =

a—&
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Finally, we have to make one more assumption in order to perform the subsequent analysis

(A2) | £ 2| 540, # too.

do la=& do

which has to be checked once we have determined the limit of (4.34) at the state w. Then
we can prove the following limit which will be essential for Lemma 4.2.

Lemma 4.1 Let be 4 € M, i.e., ap(@) = 0, By(@) # 0 07 puy(0,8) = 0, puuw(,3) # 0,

respectively. Then the limit
2 -1
d(p + pr)
— 4.
a:@) ( da a=& (4.35)

. A () P — Pk dpy,
lim = = =2
holds under the assumptions (A1) — (A2) provided that the parametrizations of the mizved
curve and the rarefaction curve are chosen according to (S1) — (S5).

Proof: The basic tool we apply for deriving the limit (4.35) is the theorem by 1"'Hospital
that we make use of several times. In order to avoid too much confusion in the presentation
of the proof, we do not proceed in a generic way but prefer a reversed strategy, i.e., we
first derive certain limits which occur in the limiting process (4.35).

First of all, we consider the limits on the rarefaction curve. From (4.6) we immediately
obtain

dﬁk 1 _ dp k . dﬁ k 1 _ dp k

= — Tr(uy) and lim — = rr(w) e

da X () da a—a da

a=d&

The variation of the corresponding characteristic velocity is given by

(@) _ %(ﬁk)dﬁ and  lim (@) _ %(ﬁ) dpe|  _
de (W) de asa  da () da | _4
In addition, we also need the second derivative
d* M. (y,) 6@ (W) 4 pove(vr. sk) [ dpr ? ar(wy) d*py
da? - da ) T da?
o 2)\k(uk) @ A (uk) o
and _ )
d* (@ v (0, 8) [ d
lim k(;“k) _p _5(UAS) (ﬁ ) £,
amdda A (w) \ daf,_s
where we apply
- o 202 (u + Py (Vg 8
Br(wr) = Vg (we)vr(ur) = — 1{3) 4 P (o k),
which due to the assumptions does not vanish at wp = . Finally, we also need the
variation of the nonlinearity factor
dag(ay) -, dpy . dag(uy) Puve (0, 8) dpy,
— = = —_ d 1 =— — .
de Bi(t) de an ad  da QXi(ﬁ) da | _. 70
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From this we conclude

lim darg (W) _ Povo(9,3) dpi

a—=d P — Pg lim <d(p—pk)> d(p—px)
A& do do =4

The same limits are to be considered for the mixed curve. First, we conclude from the
derivatives (4.28) and (4.31) in the previous subsection

. du 1 (@) dp
m —— = — " relu) ——
a—=a da )\i(u) da| _,
This result is incorporated in

dX u d dQX u vuu 5 2
lim (%) = ax(t) an =0 and lim H®) - _p ( - ( ) 70
a—=d  do )\k( ) da| _, a—é  da? ( ) —

Furthermore, we have to determine the derivative of the nonlinearity factor

d_ u v A? g d
lim O‘C’;(") = _P _S(UAS) el
a—a o 2 k(’ll,) o OZ:&
from which we derive
o dER(W) puwen(9,8) dp
lim a(ﬂ) _ Ol[l_f)ro% dov _ QX;O;(/&) da la=&
a—d& P — Pg <d(p—pk)> d(p—px)
dov dov —&

Up to now, we independently considered the limits for the rarefaction curve and the
mixed curve. In the following, we combine these results. Firstly, we observe that

d v . ox(w) d(p—pp)
clyl_r}rcly o ()\k( ) — )\k(uk)> = _Xi(ﬁ) o . =0,

and

2

lim L (Me(@) — Me(@r)) = —pmf(ﬁ:

a—& da

These limits imply

T = Y — lim —
A - - dor
lim k(@) k(W) = To—rs) = f’;(f‘) =0 (4.36)
) P — Pk il—% - Ap(@)
and
fy AR @) ()N (W) L dlptes)
lim )\k( ) )\k(uk) a—& do a—& do? _pUUU(U7S) dor a=&
e | d(p—ps) - d2(p—pi) - Yoo\ dp—pr)
(p — px) lim 252 lim =72 lu) S
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Furthermore, we calculate by the above results

7 r d(w)d}k(uk)) 1 ( ai(w) dp . ar(w@y,) dpk>
= m = m — — ilm ——
1 a—é P — Pk Xi)u) a=sa p—ppda  a=a p—p da
= . y A :
2Ak(u) @ a=do
and
A _-A d B vuU A7A d
I, = 1im k(u) k(Q’UJk) (p pk) _ P _5(UAS) (p -|-pk) 7& 0
a—& (p - pk) do 4)‘k(u) doa i

from which the assertion follows. O

With the aid of Lemma 4.1 we are now able to determine the derivative of d3/de|__,

Lemma 4.2 If the assumptions in Lemma 4.1 are fulfilled, then the limits

-1
B _ 1| (dn 4
da | _. 2dal,_,\ dB |5 '

or equivalently

dpe) o _ _Ldp
da| _.  2daf,_,

exist provided that the parametrizations of the mized and the rarefaction curve are chosen

according to (S1) — (S5) and the assumptions (A1) — (A2) hold.

)—1
a=d&

Proof: By Lemma 4.1 and (4.27) we know

_of L (d(p+pr)
a=d& da a=d& da

This is a quadratic equation for dp;/dal| _. which reads

(e}

dp
da

dpy, Yoldp|  dpy 1 (dp L 0
da | _, 2da|,_, da|,_. 2\da|,_.)
There exist two solutions, namely,
dpe|  _ dp and e Lldp
da | _,  da o do | _, 2 daj__,
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or equivalently

ap
do

_dp
. da

A=

-1
) =:q and a8 =_9
6= da| _. 2

=

dpr.
a=do dﬁ

In order to determine the admissible solution, we have to check the validity of the assump-
tion (A2). First of all, we notice that

a8

<0
do

a=d&

is implied by (S1) and (A1). From this we conclude

gl qg , q<0
do|,_. L —49/2 , ¢>0"

Furthermore, we obtain

dp—pd|  _( 3] Y| _dpe 0, q<0
do |, \""dal,_.) B |,_, dBl.s\ 34/2 L q>0
and
dptp)| (A8 Y dee| o dpe 2q . q<0
da oz:éz_ I do a=& dﬁ ﬁzﬁ_ dﬁ 6=5 Q/Q ) q>0 ‘

Obviously, assumption (A2) is valid, if and only if the parametrization of the mixed curve
and rarefaction curve are chosen such that ¢ > 0. This is always possible, since the para-
metrizations are independent. We therefore have chosen the parametrization accordingly,
see (S3) and (S4). Thus, only one of the two solutions is admissible which proves the
assertion. O

Finally, we want to remark that the characteristic velocity and the shock speed behave
differently at w = uj, = @ than they do in the case of the shock curve Hy(ug) at w = uo.

Proposition 4.13 Choose the parametrizations of the mized and the rarefaction curve
according to (S1) — (55) and assume the assumptions (A1) — (A2) to hold. Furthermore,
let w € C(Rg,ug) and u* € Ry(wo) such that w € Hy(u*). If o (w*,w) = A\.(w*) = A\ (@),

then the variation of the characteristic velocity and the shock speed are related by

doy _ dh _
do da
provided that k, # 0.

Proof: In the case of u # u*, the assertion can be immediately concluded from (4.30)
and (4.32). Here we have to assume that k, is positive. Otherwise, we already verified for
u = u* = u the limit (4.36). Together with (4.30) and (4.32) this implies

doy, ar(uw) d

do |y~ N(@) do

A=

_ A
- da

= 0.

a=d&

a=d&

Here the positivity of k, has not to be assumed, since v = w* = @ and, consequently,
ky =~ > 0. O



Alternative Construction of Mixed Curve

By the previous investigations we are now able to characterize the mixed curve by an IVP
for the states w = u(a) on the mixed curve and the relation 8 = 3(«a)) by which the mixed
curve C(Ry, ug) is glued to the rarefaction curve Ry(ug):

d%o‘) — g(@(a),B(a)), a € (&,4),  w(a) =,

PO~ f@(e). B, o€ (@.6),  Aa)=p=a

(4.38)

where g is defined by the representation of derivatives for v, u, F according to (4.28)
and (4.31) and f by (4.34) and (4.37). This IVP has to be satisfied by any smooth curve
that coincides with the composite locus composed of a one parameter family of states
satisfying (4.24) and which is attached to the rarefaction curve Ry(wuo) at @. By Prop. 4.11
¢), we immediately conclude that the mixed curve is tangent to the rarefaction curve at
w. However, these statements only hold provided that the assumption (A1) is valid and
u is a simple degeneration point of the nonlinear characteristic field, i.e., Si(w) # 0 if
ag(w) = 0. For a two-by—two system Liu explicitly verified the validity of (A1) (see
[Liu74]). For a general system Liu also claims that the mixed curve satisfies this condition
but without presenting an explicit proof (see [Liu75]). We want to emphasize that Liu
makes no assumption with respect to the second derivative of the characteristic field in
case of states where the nonlinear field degenerates. However, in our investigations the
demand for a simple degeneration seems to be necessary. Therefore, we believe that it is
worthwhile to consider the case of a general system more carefully with special emphasize
on the characterization of the degeneration points. For more details see [FFMV].

Finally, we want to remark that the mixed curve is not uniquely characterized by
(4.38). For this purpose one has to check that the state w = u(a) € Hi(wi(3)) is the
first state on the shock curve where the condition Xk(ﬁk) = or(ug, w) and w # wy holds.
In principle, there are at least two possibilities. Excluding bifurcation at w = @ = uy, is
one possibility (see [FFMV]). Alternatively, one could verify that the right—hand side of
(4.38) is a Lipschitz—continuous function of w and 3. Then standard results from ODE
theory guarantee the existence of a unique solution. However, this is beyond the scope of
the present work. We are therefore convinced that the following conjecture is true.

Conjecture 4.1 The curve defined by the IVP (4.38) coincides with the mizved curve
defined by (3.26) provided that the degeneration point of the nonlinear field is simple.

4.3 Composition of k—Curves and k—Waves

The basic principles how to construct the k—curves by composing the elementary curves in
an appropriate manner has already been described in Sec. 3.3. We therefore do not recall
them here in detail, but we summarize the curve composition for a nonlinear field.

Here we present in particular the evolution of the curve in the p—u plane as well as the
corresponding waves and characteristics in the t—z plane. The corresponding curves and
waves are sketched in Figs. 25 — 29 which are attached in the Appendix 7.2. We start at
a state ug € D with Gy # 0 and proceed along the admissible branch of the shock curve.
How to determine the admissible branch with the help of the characteristic velocities and
the shock speed is discussed in Sec. 3.3. The situation of a single shock is sketched in
Fig. 25. If the shock becomes sonic in a state w; € D, then the curve is continued by the
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rarefaction curve Ri(uq) (see Fig. 26). We can proceed along the rarefaction curve as long
as we arrive at a state uy € D where the nonlinear field degenerates, i.e., Go = 0. There
we continue with the mixed curve C(Rg, u1). In the t—x plane this means that we connect
a state w € C(Rg,uy) with an appropriate state on the rarefaction curve u* € Ry(uy) by
a shock (see Fig. 27). If this shock becomes sonic in us € C(Ry,uy), then the curve is
continued by a rarefaction curve Ry(us) (see Fig. 28). Before we arrive at such a state,
there might occur the case u; = uy. Then we alternatively proceed with the shock curve
Hi(us) = Hi(wo) (see Fig. 29). In principle, all possible cases have been considered.
Proceeding furthermore on the curve, the above cases may occur repeatedly.

4.4 Solving the Riemann Problem

We are now able to determine the Riemann solution for the Euler equations in complete
analogy to the treatment of the general hyperbolic systems. This procedure requires the
solution of a nonlinear system of equations for the parameters of the different k—curves
(see Sec. 3.1). Tt can be solved iteratively. We emphasize that in each iteration step
the k—curves have to be determined again, since the intermediate states are changing
depending on the parameter values. This procedure stops, if we find intermediate states
such that w, is connected to u;, i.e., there exists a path in the admissible phase space
composed of the different k—curves. Hence the algorithm can be interpreted as a multiple
shooting procedure as is used for solving boundary value problems for ODEs. For the
Euler equations, this algorithm can be significantly simplified. The starting point is the
observation that the 2-field is linearly degenerate and pressure as well as velocity do
not change across the corresponding contact discontinuity. Therefore, we do not have
to determine the intersection points of the three curves in the phase space. Instead, we
project this problem to the p—u plane where we only search for one intersection point of
the two nonlinear fields (see Fig. 10). In the previous sections we have already analyzed

1]

Uy

Figure 10: Intersection of curves

the behavior of the pressure and the velocity along the elementary curves. In any case
we observe that the pressure is monotone along the admissible branches according to
Prop. 4.1 b), 4.7 b) and 4.12 b). Therefore, we use the pressure as parameter. In order to
determine a unique solution of the Riemann problem, there may be exactly one intersection
point in the p—u plane. This is only guaranteed when the velocity u is monotone along the
admissible branches. Provided that the EOS is chosen such that the conditions (2.22) hold
and k, is positive along the admissible part of the mixed curve, then the monotonicity is
again ensured by Prop. 4.1 b), 4.7 b) and 4.12 b). By the monotonicity of «, more than
one intersection point of the two curves as sketched in Fig. 11 are excluded. However,
it might happen that there exists no intersection point at all. This is the case when the
parameter p is approaching zero before the curves intersect as is shown in Fig. 12. Then

42



Figure 11: Multiple intersection points Figure 12: Vacuum

the specific volume v tends to infinity according to thermodynamic consistency (2.8). In
this case we have to admit vacuum as a Riemann solution. In our investigations it will be
of no interest. We therefore omit the details.

4.5 How to compute the Riemann Solution

In the sequel we outline the main ideas how to compute the Riemann solution for the
Euler equations. This is based on determining the intersection points of the two curves
corresponding to the nonlinear fields originating in the initial states u; and u,., respectively.
For this purpose, we need three types of algorithms by which we can determine

o a state of the elementary curves for a given parameter value p;

o the admissible branch of the elementary curves which originates from either one of
the initial states depending on the parameter p;

o the intersection point in the p—u plane where we compute the two curves with varying
parameter p.

4.5.1 Computation of the Elementary Curves

The k—curves, k = 1, 3, are determined in the p—u plane with respect to the pressure p. To
this end, we need algorithms by which we can determine a single state of an elementary
curve. The structure for all of these routines is the same. In any case we prescribe a
parameter value p and determine a state w = u(p) on the elementary curve such that

p=p(v(p),e(p))-

In addition, we need the initial state wy, where the elementary curve starts, e.g.,
Hi(wo), Ri(wo), C(Ri,up). For the iteration process itself, we have to specify an initial
guess u(®. If we already have determined a state @ of the elementary curve in a previous
step, then we choose u(® = @ and p = p + Ap where Ap denotes an arbitrary but fixed
parameter increment. The iteration process for u stops, if the error

p—p(v,e)| <e (4.39)

is less than a tolerance ¢ > 0. If the tolerance is not met within an upper bound k,,,, of
iteration steps, then the algorithm fails to converge and, moreover, we stop the computa-
tion of the curve. When proceeding forward on the elementary curve then we might arrive
at a state where the curves become non—admissible, i.e.,
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a) the shock becomes sonic on Hi(uo) if Ap(u) = op(ug, u);
b) the rarefaction curve Ry(uo) ends at G(u) = 0;
¢) the mixed curve C(Rg, ug) corresponds to either

i) a sonic shock on Hi(u*), u* € Ry(uo) or

i) u* = uo.
Since we prescribe the parameter increment Ap, we will miss these states in general. How-
ever, we can detect them by the corresponding characteristic velocity Ar(w) and shock
speed o (wo, u), respectively. If we compute a state where the monotonicity of the char-
acteristic velocity in case a) or the shock speed in case b) and c,i) is violated or we step
over po corresponding to ug in case c¢,ii) then we have to determine the end points of the
admissible branch of the elementary curve accurately. To this end, we can use bisection
techniques. Alternatively, we apply the same algorithms as before but now we incorporate
the additional equation and determine p (see e.g. (4.48)). In the sequel, we present the
algorithms for the elementary curves in some detail. The rarefaction curve is determined
as the solution of an IVP. In case of the shock curve or the mixed curve, we can compute
the curves by solving an IVP or a nonlinear algebraic problem, alternatively.

Rarefaction Curve

Choosing the pressure p as parameter, i.e., f = p, the rarefaction curve is determined

according to (4.6) by the IVP

dz;p) =g'(p.u(p)), u(po)=u" (4.40)

with
a@(p) = ZE;]Z; g () = () = — X,:(la) (@) = e
E(p) A () M)\ p o Ny u ¢

In general, this system of ODEs can not be solved explicitly. Therefore, we determine the
rarefaction curve Ry (wo) in our computations by discretizing these equations.

For this purpose, we perform one step with the classical Runge-Kutta scheme of 4th
order, i.e.

ko= g (0©,79),
ky = g (09405257 +0.5A5k),
ks = g (P9 405257 +0.5A5k,),
ke = g (0% +2ap=p,a” + Apks)

_ _ Ap
o) = a4 %(kl + ks + ks + k).
Here @® denotes the initial value and Ap is the step size. In our computations, this
scheme rendered satisfying results.
Since the approximation error accumulates along the integration path a step control is
useful. Besides standard techniques, we can alternatively control the step size by the error
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in the pressure difference, i.e., if [p(v("), ) — p| > ¢ than we twice repeat the Runge-
Kutta scheme with step size Ap/2. This procedure can be recursively repeated until the
error tolerance is met or a number of refinement steps is exceeded.

Shock Curve

Again we choose the pressure p as parameter, i.e., @ = p. Then the admissible branch of
the shock curve is determined by the IVP

du(p)
dp

(0)

=g°’(p,u(p)), ulp)="1u

with w(p) = (v(p),u(p), F(p))T and the right hand side, according to (4.15), (4.19) and
(4.17)

_2kp

For completion, we summarize here the representation of the coefficients

v . { p_p(o)}1/2 Fp_p(o) FU—U(O)
O =&k — y kp .

N = ep— k=~ — ———— =1
k 5kc’ " 2 p ’ 2 v

v — (0

Since the discretization error accumulates when integrating along the trajectory, it is
more convinient to determine the state on the shock curve directly from the Rankine—
Hugoniot relations. Therefore we want to describe how to determine a state on the Hugo-
niot curve depending on the parameter p. The starting point are the equations

plose) =p, €= eo—0.5(p(v,c) + po)(v — vo).

Substituting p by p(v, e) in e, these reduce to a scalar equation for the volume v

P‘|‘P0(U Y

5 (4.41)

fv) :=plv,e)—p with e(v) :=eg —
Close to the initial state corresponding to po this problem exhibits a unique solution, since
f/(v) = pv(vv e) + pe(vv 6)6/(1)) = _CQ/UZ + 05(}5 - pO)

holds. Obviously, the derivative is negative close to the initial state. Hence, we can
iteratively solve (4.41) by the Newton scheme. The resulting scheme reads

@0 Y _ 5
U(i—l_l) — U(Z) _ (2€ <U (;)e ) Np (442)
ps’ = pe’(po+p)/2

with




If the error tolerance (4.39) is met, we compute

Tk = €k —p._po, u:uo—l—p:po, E =% +0.5u%
v(l)—vo Ok

Instead of solving (4.41), we alternatively could define e implicitly, i.e.,

p(v,e(v)) +po(v
9

— UO)

e(v) = ey —

or rewrite (4.41) with respect to the two unknowns v and e, i.e.,

p(U,e)—ﬁ _ 0
e—eo—l—WU—vo) 0 /"

These alternative formulations require more floating point operations, but they need the
same iteration rate. Additionally, they differ from (4.41) in the fact that the iterates lie
on the Hugoniot curve, whereas the iterates (4.42) do not.

Mixed Curve

We parametrize the admissible part of the mixed curve as well as the corresponding part
of the rarefaction curve by the pressure, i.e., a = p, 3 = pi. Then we can determine the
mixed curve by the IVP

dz(p) = g"(p,a(p),pe(p), wlpo) =@ =,
4 p (4.43)
pdkip@ = fm(paﬁ(p)vpk(p))v pk(po) =py = }3

with &(p) = (v(p),u(p), E(p))T and the right-hand side

’Vkp
TR
1 —2 —2
9" (pT) = — L (Ra) + X)) £
)\k(p) 2 — <2

2 <pkp — 0.5 (v — o) (X(p) — Ai(pk))> iy G;((pﬁ) N Wklszk(pk»

according to (4.28), (4.31) and (4.34), (4.37), respectively. Here the characteristic velocities
are calculated as functions of the states @(p) on the mixed curve and wy(pr) on the
rarefaction curve

Me(p) = Xe(@(p)),  Ar(pr) = Ae(@i(pr)) = F(@i(pr), w(p)).

In general, the rarefaction curve is not known explicitly but has to be determined by an

IVP. Then we have to extend (4.43) by

duy(p)
dp
Instead of discretizing the IVP, we compute the mixed curve by determining the zero
p* of

= g" (@ (pe(p), pr(p).  Til(po) = @y = @

g(p") = pv(p”),e(p”)) —p =0 (4.44)
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with

*,_Uk*_ﬁ—p* e*::ek*—lN Vo(p™) — o5 ). ‘
v(p”) == vir(p”) o) (r") (P7) = 5P+ ) (w(p") (r")) (4.45)

In order to simplify notation we abbreviat here Xi(p*) = Xi(ﬁ(p*)) for the characteristic
velocity on the rarefaction curve. This problem can be iteratively solved with the Newton
scheme. To this end, we need the derivative ¢’ which can be determined by (4.45) and
(4.40). First of all, we calculate the variation of the Lagrangian wave speed

» G
Ak(p*)or(p*)

where G* is evaluated at @ (p*). From this we derive

N T ik 0 70 DU U 8 BT ST G L S R PO T

— ’
Ae(p*)vr(p*) 2 v

where k, is defined accordingly to (4.14) with Ap = p — p*. Obviously, ¢’ vanishes if

I'A
a) pr=7p or b) G"=0 or c) 7—§Np:0.
p

Considering the state @ = wg(p) on the rarefaction curve where the nonlinear field degen-
erates, i.e., G = 0, we conclude that a) and b), respectively, hold if and only if p = p* = p.
Then p* = p is a root of (4.44). This parameter value corresponds to a point of primary
bifurcation. Furthermore, condition ¢) can be rewritten as

Xe(P) Fo—o

=0
—2
AL(p) 2w

where we apply (4.24). This equation holds if p corresponds to a point of secondary
bifurcation (4.10) where the shock speed becomes sonic, i.e.,

Th (). u(p) = Xulp) = Nelh). (4.47)
These states are excluded in our investigations, since we assume that (4.23) holds. We
emphasize that (4.23) implies that k, is positive, because k, can be represented as k, =
y—=T/2+Tp*/p. Hence, locally there exists a unique solution of (4.44) as long as p does not
correspond to a state of primary or secondary bifurcation. Except for bifurcation points
the roots can be computed by applying the Newton scheme.

Finally, we want to remark that the admissible part of the mixed curve is terminated
by two different kinds of states (i) the zeros of dp*/dp which coincide with sonic shocks and
(ii) p* is approaching po. The latter state can be analogously calculated by determining
the zero of (4.44) where we fix p* = poy and search for p = p(po) instead, i.e.,

90(p) :== p(v(p),e(p)) —p =0 (4.48)

with

B )= o= 5+ ml(oo) = o)

47



The derivatives are given by

1Ay ! N p /~_Xk(ﬁ)
v'(p) = WESE ¢ (p) = YWENE 90(p) = (o)

Once more, g{ does not vanish except for points of secondary bifurcation.
For computing a state of the mixed curve C(Ry, uo) we apply the Newton scheme to

(4.44) in order to determine p* = p*(p). The algorithm reads
p(i‘l'l) - p(i) —g <p(i)> /q <p(i)>

where ¢ and ¢’ are defined by (4.44), (4.45) and (4.46). For this purpose, we need the
states of the Hugoniot curve Hy (uk (p(i)>>

. . 5 @) , , . . .
@ =, (p) — 52 P = (") — 1 5+ p) (09 = v (1))
A (p(i)) 2

which originate from uk(p(i)) of the rarefaction curve Ri(uo). From this we compute

g <p(i)> = <U(i)7 e(i)> —p

and
2(p—p?)GH [ 1
g (") =- (A p) =5 (p+p") pe (v, et )
() = =PI (501 ) (0
where , ( (})) ,
2 () = G e (D)
)‘k <p ) - Uz (p(z))v )‘k(p) - UQ (]5)7

denote the characteristic velocities with respect to the states uz(p(?) of the rarefaction
curve and the state u() of the mixed curve, respectively.
If the error tolerance (4.39) is met, we put p* = D and compute

T N (). o) = o N ey o(5) = *_15+p*v~_vk .
r=A(p), v(p) (") o) (p) (") 5 (v(P) (r")),
and - |
u(p) = e (77) + = B() = () + 5u’(0)

Since we compute the mixed curve starting at the state where the nonlinear field
degenerates, i.e., pp = p with G = 0, we may encounter problems. Here Lemma 4.2 is
helpful. Tt states that proceeding forward on the mixed curve implies that we locally move
backward on the rarefaction curve half as fast. By this relation it is possible to determine
an appropriate initial guess for the Newton scheme on the rarefaction curve.

In the end, we emphasize that it is more convenient to determine the mixed curve by
(4.48) instead of realizing Liu’s geometric definition in Section 3.2.3. Here we prescribe
the parameter of the mixed curve and search for the corresponding state on the rarefaction
curve. The geometric construction principle is the other way around, i.e., it starts from
a state on the rarefaction curve and moves along the corresponding Hugoniot curve until
a state is arrived where (3.25) is satisfied. Since the rarefaction curve is approximately
determined by an ODE solver, the approximation error accumulates which might have a
strong influence on the approximation of the mixed curve.
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4.5.2 Determining the Curve Construction

For each initial state u; and w,, respectively, we have to determine the k—curves, k = 1, 3.
They can be determined by the same procedures. We proceed forward on the 1-curve and
backward on the 3—curve. This means that we search for states which can be connected
to u; by a 1-curve. Otherwise we determine states such that u, is connected to this state
by a 3—curve. In u; and u, the curves are split into two branches that correspond to
increasing or decreasing pressure. Since we assume u to be monotone with respect to p we
do not have to compute all of the four branches when determining the intersection point.
Here we distinguish three cases. Obviously, there is nothing to do for w; = w,. If either
pr = p, or u; = u,, then we have to compute only one branch for each of the two curves.
The four possible configurations are sketched in Fig. 13. The most expensive case occurs,

N A, EN
n Al | A \ Vi

Figure 13: Three branches

if p; # p. as well as u; # u,. Then one branch may have an intersection point with either
of the two branches of the other curve. This makes it necessary to determine three of four
branches. Again, the four different configurations are presented in Fig. 14.

1™ /“& /f”

Figure 14: Two branches

Except for the trivial initial configuration, there are k., € {2,3} branches to be
computed. Here k,,,, can be directly determined from the initial values. For each of the
branches we have to store the following information:

o the parameter value p is increasing or decreasing, i.e., sign Ap = +1;

e the type of the elementary curve (H, R, C) that is actually computed and whether
the current state is admissible;

e the states of the branch which already have been determined;
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o the parameter pressure p for which we will compute the corresponding state w of the
branch;

e the origin (u,, p,) of the elementary curve (here: only shock and rarefaction curve),
that is actually computed.

As long as there is no intersection between the branches of the different curves we proceed
with computing the next state of the branch. Here we distinguish between three cases
depending on the type of the elementary curve.

Type = Shock
e compute the state @ of the shock curve Hy(u,) corresponding to the parameter p;

e if the shock speed is still monotone, then add w to the computed values of the current
branch;

e else compute the state u, and the pressure p,, respectively, where the shock speed is
sonic and add (wus, ps) to the list of already computed values of the current branch.
For preparation of the next step we set type = rarefaction and w, = u,.

Type = Rarefaction

e compute the state @ of the rarefaction curve Ri(u,) corresponding to the parameter
p;

e if the characteristic velocity is still monotone, then add @ to the computed values of
the current branch;

e clse compute the state u, and the pressure p,, respectively, where the nonlinear
fields degenerates, i.e., G = 0 and add (u,, p,) to the list of already computed values
of the current branch. For preparation of the next step we set type = mixed and
U, = u,.

Type = Mixed

e compute the state w of the mixed curve C(Ry, u,) corresponding to the parameter p;
p* denotes the pressure value of the corresponding state u* of the rarefaction curve

Ri(w,);

e if p* ¢ (min(p,,p,), max(p,,p,)), then compute the state up € C(Ry, u,) such that
the corresponding state u* of the rarefaction curve Ry(u,) coincides with the origin
u, of the rarefaction curve and add (ug, pr) to the list of already computed values
of the current branch. For preparation of the next step we set type = shock and
U, = UR;

e if p* € (min(p,, py), max(p,, py)) but the monotonicity of the shock speed T (u*, @) is
changing in the calculated state, then determine the state us where the shock speed
becomes sonic and add (us, ps) to the list of already computed values of the current
branch. For preparation of the next step we set type = rarefaction and w, = u.

e else if p* € (min(p,, py), max(ps,py)), then add @ to the computed values of the
current branch;
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4.5.3 Determining the Initial Curve Type

In the previous section, we have described how to proceed on one branch. To this end, we
need to know the current type of the elementary curve. For the initial states ug € {u;, u, }
this type has to be determined for the branch of interest that is to start at this state. The
starting point is the eigenvector decomposition in Lagrangian coordinates (cf. Prop. 3.2b))

U — ug = _i (?(ﬁ) - T(EOD = 17 () + a:P(u) + asFs(u)

Ok

where the coefficients are determined by

_ 5k|Xk| + pu — Pope _ ( Ap > _ Ek|Xk| — Pu + PoPe
a; = Ap — = , ag=—|——=—1], az=A ——
257 | Ak | Tk k| 20| Al
with Ap = p — po. Provided that (2.21) and (2.22), respectively, hold then we conclude
sign @y = —sign Ap, signas = sign Ap.

According to Liu, the shock curve Hy(ug) can be split into two separate branches by the
sign of a;. From this observation we derive the following classification of the admissible
branches depending on Ap:

o k=1:
a) Ap>0: u € H, (ug) &7, >0 Gy > 0;
b) Ap < 0: u € Hi (uo) & 7}, < 0 & Gy < 0;
o k=3
a) Ap > 0: u € Hf (uo) & 7, >0 & Gy < 0;
b) Ap < 0: w € Hy (up) 7}, <0< Gy > 0.

We emphasize that the 3—curve is determined in backward parameter direction, since we
start in the end point w, and not in the intersection point. Hence Ap has to substituted
by —Ap for the computation.

4.5.4 Computation of Intersection Points

Up to now, we have described how to determine the branches that might intersect and
how to proceed on these branches. We finally have to explain the computation of the
intersection point itself. For this purpose we introduce the support of pressure values cor-
responding to that part of the branch which has been already computed. If the supports
of the two curves do not overlap, then no intersection is possible (see Fig. 15). An in-
tersection may only happen if the supports overlap. For each end point of the currently
computed branches we introduce pointers. These point at already computed states of the
other curve such that the new state lies in their support. This situation is shown in Fig. 16.
If the corresponding u values overlap, then we compute the possibly existing intersection
point by determining the intersection of two straight lines. In the other case, we update
the pointers such that the last state always knows where to look for an intersection. For
instance, we consider the configuration plotted in Fig. 17. Suppose that in the previous
step the curve end lies between the state P, and Ps;. In the next step this curve end may
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Figure 16: Non—overlapping supports Figure 17: Overlapping supports

be between the states P, and P,. Then we compare the range of values between the states
Py and P; as well as the new and old value of the curve. If these ranges overlap, then we
test for an intersection otherwise we continue.

This procedure seems to be rather complicated. But the update of the pointers only
requires one or two values to be compared. Since we consider the curves as sorted lists
of states, the effort for searching the corresponding states for the first time increases
logarithmically. The most expensive part is the computation of the intersection of two
straight lines. But this is only performed in the neighborhood of the intersection point
itself and in the case of overlapping p and w supports. This, however, only marginally
affects the overall complexity.
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5 Comparison between an Ideal Gas and a Real Gas

In order to investigate the quantitative influence of the non—convex EOS on the solution
of the Riemann problem, we compare an ideal gas and a real gas. For this purpose we
modify the ideal EOS for a perfect gas

pel(v,e) = (y=1)ev™, y=14 (5.1)
by a non—convex perturbation
Pre(v,€) = €(—0.0024 v° + 0.0469 v* — 0.3444 v 4+ 1.1760 v*> — 1.8942v + 1.4182)  (5.2)

in such a way that the resulting real gas EOS

(5.3)

A Ppe + (1 - Oé)pc , V€ [10,55],
Palv,€) =

Pe , elsewhere ;

exhibits a non—convex region in the p—v plane for v € [1,5.5]. Here the degree of non—
convexity can be varied by the parameter o € [0,1]. The coefficients in (5.2) are chosen
such that p, is twice differentiable and, in addition, p,(v,e) < 0 for all states v,e > 0.
In Fig. 18 the isoenergetic lines to € = 5 = const are presented in the p—v plane for the
convex case (o = 0) and the non—convex case (o = 1). Within the range v € [1.0,5.5]
the modified pressure p, is concave, and elsewhere it coincides with the ideal gas law p,.
The corresponding isentropes can be computed by (2.19) which are shown in Fig. 19. We
notice that they do not necessarily coincide outside v ¢ [1.0,5.5].

2 -— 2
a=l ——
1.8t a=0 ——— g 18 ¢
16\ ] 16
14 L4t
12t
12t
1 Nl
0.8 |
0.8 f 06 |
0.4 + e 02t
0.2 - 0 -
1 15 2 25 3 35 4 45 5 55 1 15 2 25 3 35 4 45 5 55
Figure 18: Isoenergetic lines Figure 19: Isentropes

We now consider the Riemann problem given by the initial values

vy 1 Uy 5.5
Uj = —1.5 , Uy = 1.5
E; 6.125 E, 6.125

where the corresponding pressures are p; = p, (v, €;) = 2 and p, = p,(v,,¢e,) = 0.36, a = 1.
This problem is solved applying the perfect gas (5.1) and the real gas (5.3), respectively.
In Fig. 20 the 1—curves and 3—curves originating from w; and u, are presented for the cases
a =0 and o = 1. There is a significant difference between the two different EOSs along
the curves. But for the test configuration at hand the intersection points are close to each
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Figure 20: Intersection of curves p—u plane

other since the 3—curves almost coincide along the connection path, whereas the remaining
part of the path differs essentially. This is also reflected in the wave propagation in the
t—x plane (here: t = 0.2), see Fig. 21 — 24. Since there occur two states where the 1-field
degenerates, the 1-wave is composed of a shock wave which is continued by a rarefaction
wave when the shock speed becomes sonic and finally we proceed with a mixed curve.
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Figure 21: specific volume Figure 22: velocity
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Figure 23: specific internal energy Figure 24: pressure
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6 Conclusion and Outlook

An extended Riemann solver for the Fuler equations has been derived where the EOS
is not supposed to be strictly convex. This solver is meant to be a helpful tool in the
following context

e performing parameter studies in order to investigate the influence of the non-—
convexity of the EOS

o design of shock tube experiments,
o derivation of appropriate initial states for test configurations,

e validation of numerical schemes applied to flow simulations in materials exhibiting
a region where the isentropes are not convex, e.g. retrograde fluids.

In a forthcoming work, we want to investigate the influence of anomalous wave structures
caused by the non—convexity of the isentropes on the numerical scheme. For instance,
the approzimate Riemann solver originally introduced by Roe in [Roe81] is frequently
applied in many finite volume methods. The Roe solver is known to exhibit non—physical
expansion shocks in the presence of sonic points which can be suppressed by an entropy
fix (see e.g. [LeV90]). However, expansion shocks are physically admissible in fluids with
non—convex KOS and may not be suppressed by the numerical scheme.

Finally, we emphasize that the analysis of the mixed curve has not been completed
yet. For the two by two case of hyperbolic equations Liu verified the Conjecture (3.1) (see
[Liu74]). For the Euler equations its validity is supported by our numerical investigations.
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7 Appendix

7.1 Some Remarks on Hyperbolic Systems of Conservation Laws

In the analysis of (3.1) it is sometimes convenient to switch to an equivalent system by
performing a coordinate transformation

and to change the variables
u=g(w). (7.1)
In view of a invertible transformation, the Jacobians

G(w) = dg(w)/0w and D(t,z):=d(t,%)/0(t,z)

have to be regular. Then the system (3.1) can be equivalently transformed to the quasi—
conservative form

w;+ A(w)w, = 0 (7.2)
with )
A(w) := (H(w))™ (2.0 + 7.B(w)), B(w):=(G(w))" A(u)G(w)
whenever
H(w) :=1,I +1,B(w)
is regular.

~ Analogously to A(u), there exists a complete set of eigenvalues S\k('w) of the matrix
A(w) corresponding to the right eigenvectors #,(w) and the left eigenvectors Ix(w). These
are related to those of A(w) by

A(w) = (LA (w) = &.0)(#.d — 1A (w))™", R(u) = G(w)R(w), L(u) = L(w)(G(w))™'

such that . . . . . .
A(w) = L(w)A(w)R(w), L(w)R(w)=1. (7.3)

Since H and D are supposed to be regular, we easily verify
Pp— I d(w)#0 YweD, 1<k,j<n.

This means that the matrix 2,1 — fl,ji(’w) is also regular. Furthermore, tlrle characteristic
fields can be written in terms of the eigenvalues and right eigenvectors of A, in particular,

ozk(u) = Vu)\k(u) rk(u) = O'kawS\k(’w) %k(w) =: ak&k('w)

with
det D
(0 — Eohi(w))?

We emphasize that the structure of the k—wave characterized by the nonlinearity factor

O 1=

oy remains unchanged under an invertible transformation.
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Furthermore, we need to know how the second derivative of the characteristic field in
the direction of the eigenvector ) behaves under a transformation. A similar calculation
as in the case of ay, yields

Bi(w) = Vuay(w)ri(u) = o (—2t_a<w> . )

Whenever the nonlinear field degenerates, i.e., ax(u) = ar(w) = 0, we conclude that
Br(u) = 0 if and only if Bk('w) = 0. This means that the type of degeneration is invariant
under a transformation.

There are two kind of transformations which are of special interest, namely a variable
transformation of the form (7.1) without changing the underlying coordinate system, i.e.,
t =1, + = & and a coordinate transformation in space only, i.e., t = 1, = = z({, %),
respectively. When performing a pure variable transformations, then the matrices reduce
to

A(w)=B(w), D=1, o, =1
in the other case they are given by
A(w) = i,B(w), D =diag(1,%,), op = 1/i, #0.

In the following we will consider two transformations for the Euler equations, namely
the transformation to primitive variables and the Lagrangian equations. The first transfor-
mation is preferable in the context of analyzing rarefaction waves whereas the Lagrangian
representation is helpful in the analysis of shock waves.

Example 1: Primitive Variables

As long as the solution of the Fuler equations is smooth it is more convenient to transform
the system (3.1) of the conservative quantities to the quasi—conservative form (7.2) of the
primitive variables (v, u,e), i.e.,

T
u = g(w) = <1/U7 u/v, (6 + u2/2)/v> s
whereas the coordinate system remains unchanged, i.e.,
t=1t, x=4%.

Then the Jacobian and its inverse are given by

—v~2 0 0 —v? 0 0
G = —uv™? vt 0 , G™'= uv —v 0
—(e+u?/2)v™% wo™t vt —(E+u*)v wv v
since det G(w) = —v™ < 0. The matrices H and D reduce to the identity matrix.
Hence, the quasi—conservative system (7.2) is characterized by the matrix
u —v 0
A(w)=B(w) = [ vp, u wvp
0 wvp wu
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where p is the equilibrium pressure specified by an incomplete EOS p = p(v,e). The
eigenvalues of A are given by

M(w)=u4epe, k=1,2,3
and corresponding left and right eigenvectors satisfying (3.3)

iw) = p((1—c2)p. —2/poere/(vp)el — (1 —ed)p,)"

U2

i - (1 =& p,e 2, (1 —e2)/p)T.
k(w) (1_|_€z)cg< €k —|—p€k,€kc/v,€kp —I_( 6k)/p>

Here, the sound speed is supposed to be strictly positive. Then the characteristic fields
are essentially characterized by the fundamental derivative of gas dynamics G since the
nonlinearity factor turns out to be

ap(w) = Ve (w) rip(w) = e,Gefv,  k=1,2,3.

Furthermore, the coefficient Bk is determined by
. . 2
ﬁk(’w) = vwak(w) ’I"k(’IU) = —¢&k <5kg + %pvvv(vvs)> ) k= 1,2,3.

Instead of e we also might have used p or s as a new variable which is frequently done
in the literature. However, in the latter case we have to impose some constraints on the
sign of p,(v,e) and p.(v,e) in view of a reversible transformation. This is not necessary
when choosing e as primitive variable.

Example 2: Lagrangian Representation

An alternative representation of the fluid equations is based on the trajectories of the
particles in a flow field. This can be derived from the Eulerian representation by the
Lagrange transformation

(1)
i=toi= [ pltdy, (0 = ut.a(t)

where we might have used any positive quantity in the definition of Z in order to ensure
the existence of the inverse as can be concluded from the Jacobian

i (hn)-(0) w5-aes -(ws) o

since det D = p > 0. Additionally performing the variable transformation

=1

w=gw)=1/v,u/v,E/0), w:==1

the fluid equations are transformed to another system of conservation laws, the so called
Lagrange equations

w + (f(w), =0
with the flux F (—u, p(v,e),u p(v, e)))T. The Jacobian of f is given by
B 0 -1 0
Aw) =0 f(w)/du=| p, —up.  pe
upy p—u’pe upe
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Here the eigenvalues are just
Me(@) = epefv, k=1,2,3.
A set of corresponding left and right eigenvectors which are bi—orthonormal are

o ~ ~ T
T‘k(’ll,) = <(5z - 1)}75 - 527 )‘kv (1 - 52)}% + 52}7 + )\ku> ’

— U2

_ T
lk(u) = 1 22 ((52 - l)p + 5zpv7 (1 - 52)“ - 52”276752 -1+ 52%) .

(14 ¢e3)e?
Hence the nonlinearity factor is just
ar(@) = Vg Tr = G\ /v = exGc/v?
and the coefficient 3, is determined by
1

By(@) = Vg (@) 7i(w) = — (@) + pun(v.5)) . k=13,

2\ ()
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7.2 Representation of Curves and Waves corresponding to a
Nonlinear t—Field

Figure 25: Single Shock

Figure 27: Sonic Shock — Rarefaction — Mixed
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Figure 29: Sonic Shock — Rarefaction — End Mixed — Shock
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